NVIDIA TITAN Ada

NVIDIA TITAN Ada

À propos du GPU

La carte graphique NVIDIA TITAN Ada est un processeur graphique incroyablement puissant et avancé conçu pour les tâches informatiques à haute performance. Avec une fréquence de base de 2235 MHz et une fréquence boost de 2520 MHz, cette carte graphique offre des vitesses de traitement ultra-rapides, ce qui la rend idéale pour des applications exigeantes telles que l'intelligence artificielle, l'analyse de données et les simulations scientifiques. L'une des caractéristiques remarquables de la TITAN Ada est sa mémoire massive de 48 Go, alimentée par le type de mémoire GDDR6X et fonctionnant à une fréquence de 1500 MHz. Cette capacité mémoire étendue permet une multitâche sans heurts et la manipulation de grands ensembles de données, garantissant que les utilisateurs peuvent travailler avec des charges de travail complexes et intensives en données sans aucun goulot d'étranglement de performance. Avec pas moins de 18432 unités de traitement et 96 Mo de cache L2, la carte graphique TITAN Ada est capable de fournir des niveaux inégalés de traitement parallèle et de puissance de calcul. Son TDP élevé de 800 W et sa performance théorique de 92,9 TFLOPS soulignent davantage ses capacités exceptionnelles, ce qui en fait un choix de premier plan pour les professionnels qui exigent des performances sans compromis. En conclusion, la carte graphique NVIDIA TITAN Ada est un véritable catalyseur dans le monde de l'informatique à haute performance, offrant une combinaison inégalée de vitesse, capacité mémoire et puissance de calcul. Ses spécifications avancées en font un choix exceptionnel pour les professionnels des domaines tels que l'IA, la science des données et la recherche computationnelle, où des charges de travail exigeantes nécessitent une carte graphique capable d'offrir des performances exceptionnelles.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Desktop
Nom du modèle
TITAN Ada
Génération
GeForce 40
Horloge de base
2235MHz
Horloge Boost
2520MHz
Interface de bus
PCIe 4.0 x16

Spécifications de la mémoire

Taille de Mémoire
48GB
Type de Mémoire
GDDR6X
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
384bit
Horloge Mémoire
1500MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
1152 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
483.8 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
1452 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
92.90 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
1452 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
91.042 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
144
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
18432
Cache L1
128 KB (per SM)
Cache L2
96MB
TDP
800W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
91.042 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
91.769 +0.8%
91.375 +0.4%
91.042
90.219 -0.9%
89.778 -1.4%