NVIDIA RTX 5000 Embedded Ada Generation X2

NVIDIA RTX 5000 Embedded Ada Generation X2

À propos du GPU

La GPU NVIDIA RTX 5000 Embedded Ada Generation X2 représente un bond en avant significatif en matière de performance graphique mobile, en faisant une option passionnante tant pour les développeurs que pour les gamers. Avec une fréquence de base de 930 MHz et une fréquence de boost remarquable de 1680 MHz, cette GPU offre une puissance de traitement impressionnante. Les 16 Go de mémoire GDDR6 associés à une fréquence de mémoire de 2250 MHz garantissent une bande passante élevée pour les applications exigeantes, permettant un fonctionnement fluide dans des tâches gourmandes en ressources telles que le ray tracing en temps réel et les charges de travail alimentées par l'IA. Avec 9 728 unités de shading et une performance théorique robuste de 33,344 TFLOPS, la RTX 5000 excelle dans la restitution de graphismes réalistes et de simulations complexes. Le cache L2 de 64 Mo améliore l'efficacité et la réactivité, assurant un gameplay plus fluide et des temps de rendu plus rapides. Avec une puissance de conception thermique (TDP) de 150 W, la GPU trouve un équilibre entre performance et efficacité énergétique, ce qui la rend bien adaptée aux systèmes portables sans sacrifier les capacités. L'architecture Ada apporte des améliorations significatives en matière de compatibilité IA, élevant encore la performance, en particulier dans les jeux modernes et les applications professionnelles. En résumé, la GPU NVIDIA RTX 5000 Embedded Ada Generation X2 est un choix redoutable pour ceux qui recherchent des performances de haut niveau sur des plateformes mobiles, offrant aux utilisateurs une technologie de pointe capable de gérer les tâches les plus exigeantes avec aisance. Que vous soyez un développeur cherchant à repousser les limites du rendu ou un joueur à la recherche de visuels réalistes, cette GPU ne déçoit pas.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Mobile
Date de lancement
March 2023
Nom du modèle
RTX 5000 Embedded Ada Generation X2
Génération
Quadro Ada-M
Horloge de base
930 MHz
Horloge Boost
1680 MHz
Interface de bus
PCIe 4.0 x16
Transistors
45.9 billion
Cœurs RT
76
Cœurs de Tensor
?
Les Tensor Cores sont des unités de traitement spécialisées conçues spécifiquement pour l'apprentissage en profondeur, offrant des performances supérieures en matière d'entraînement et d'inférence par rapport à l'entraînement FP32. Ils permettent des calculs rapides dans des domaines tels que la vision par ordinateur, le traitement du langage naturel, la reconnaissance vocale, la conversion texte-parole et les recommandations personnalisées. Les deux applications les plus remarquables des Tensor Cores sont DLSS (Deep Learning Super Sampling) et AI Denoiser pour la réduction du bruit.
304
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
304
Fonderie
TSMC
Taille de processus
5 nm
Architecture
Ada Lovelace

Spécifications de la mémoire

Taille de Mémoire
16GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
Horloge Mémoire
2250 MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
576.0GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
188.2 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
510.7 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
32.69 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
510.7 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
33.344 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
76
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
9728
Cache L1
128 KB (per SM)
Cache L2
64 MB
TDP
150W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.9
Connecteurs d'alimentation
None
Modèle de shader
6.8
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
112

Benchmarks

FP32 (flottant)
Score
33.344 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
36.853 +10.5%
30.615 -8.2%
27.097 -18.7%