NVIDIA Quadro T1000 Mobile
À propos du GPU
La carte graphique mobile NVIDIA Quadro T1000 est un GPU polyvalent et puissant conçu pour une utilisation professionnelle. Avec une fréquence de base de 1395 MHz et une fréquence de suralimentation de 1455 MHz, ce GPU offre des performances exceptionnelles pour les charges de travail exigeantes. Les 4 Go de mémoire GDDR5, fonctionnant à 2001 MHz, garantissent un multitâche fluide et réactif, même lors du travail avec des ensembles de données volumineux et complexes.
L'une des caractéristiques remarquables du Quadro T1000 est ses 896 unités de shader, qui lui permettent de gérer facilement le rendu et les calculs complexes. Le cache L2 de 1024 Ko améliore encore ses performances en réduisant la latence et en améliorant la réactivité globale du système. Avec une TDP de 50 W, le Quadro T1000 trouve un bon équilibre entre la consommation d'énergie et les performances, ce qui le rend adapté à un large éventail d'applications professionnelles.
La performance théorique de 2,607 TFLOPS garantit que le Quadro T1000 peut gérer même les charges de travail professionnelles les plus exigeantes, telles que le rendu 3D, le montage vidéo et la conception assistée par ordinateur. Que vous soyez créateur de contenu, ingénieur ou architecte, ce GPU a les capacités pour répondre à vos besoins.
Dans l'ensemble, la NVIDIA Quadro T1000 Mobile GPU est une carte graphique hautement capable et fiable qui offre d'excellentes performances pour une utilisation professionnelle. Sa combinaison de hautes fréquences d'horloge, de mémoire abondante et de consommation énergétique efficace en fait un choix de prédilection pour les professionnels ayant besoin d'un GPU fiable pour leur travail.
Basique
Nom de l'étiquette
NVIDIA
Plate-forme
Professional
Date de lancement
May 2019
Nom du modèle
Quadro T1000 Mobile
Génération
Quadro Mobile
Horloge de base
1395MHz
Horloge Boost
1455MHz
Interface de bus
PCIe 3.0 x16
Transistors
4,700 million
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
56
Fonderie
TSMC
Taille de processus
12 nm
Architecture
Turing
Spécifications de la mémoire
Taille de Mémoire
4GB
Type de Mémoire
GDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
128bit
Horloge Mémoire
2001MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
128.1 GB/s
Performance théorique
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
46.56 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
81.48 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
5.215 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
81.48 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
2.555
TFLOPS
Divers
Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
14
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
896
Cache L1
64 KB (per SM)
Cache L2
1024KB
TDP
50W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
7.5
Connecteurs d'alimentation
None
Modèle de shader
6.6
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
32
Benchmarks
FP32 (flottant)
Score
2.555
TFLOPS
Comparé aux autres GPU
FP32 (flottant)
/ TFLOPS