NVIDIA Jetson Orin NX 16 GB

NVIDIA Jetson Orin NX 16 GB

À propos du GPU

Le GPU NVIDIA Jetson Orin NX 16 Go est une unité de traitement graphique de qualité professionnelle qui offre des performances exceptionnelles et une efficacité pour une variété d'applications. Avec une taille de mémoire de 16 Go et le dernier type de mémoire LPDDR5, ce GPU offre des améliorations significatives en termes de vitesses de transfert de données et d'efficacité énergétique par rapport aux générations précédentes. L'horloge mémoire de 1600 MHz et les 1024 unités de shaders fournissent la puissance de traitement nécessaire pour des tâches exigeantes telles que l'inférence en IA, les machines autonomes et le calcul haute performance. La mémoire cache L2 de 256 Ko contribue à améliorer encore les performances du GPU en réduisant la latence mémoire et en améliorant l'efficacité globale. Malgré ses capacités de performance impressionnantes, le Jetson Orin NX 16 Go GPU a un TDP relativement faible de 25 W, ce qui le rend adapté aux environnements contraints en énergie tels que les appareils périphériques et les systèmes embarqués. Cette combinaison de hautes performances et de faible consommation d'énergie en fait un choix idéal pour une large gamme d'applications, allant de la robotique et des véhicules autonomes à l'imagerie médicale et à l'automatisation industrielle. Avec une performance théorique de 1,88 TFLOPS, le GPU NVIDIA Jetson Orin NX 16 Go est capable de gérer des tâches computationnelles complexes avec facilité, ce qui en fait une solution polyvalente pour les développeurs et les ingénieurs travaillant sur des projets d'IA et d'apprentissage en profondeur. Dans l'ensemble, le GPU NVIDIA Jetson Orin NX 16 Go offre un mélange convaincant de performances, d'efficacité et de fonctionnalités avancées, ce qui en fait un ajout précieux à toute station de travail professionnelle ou appareil informatique périphérique.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Professional
Date de lancement
February 2023
Nom du modèle
Jetson Orin NX 16 GB
Génération
Tegra
Interface de bus
PCIe 4.0 x4
Transistors
Unknown
Cœurs de Tensor
?
Les Tensor Cores sont des unités de traitement spécialisées conçues spécifiquement pour l'apprentissage en profondeur, offrant des performances supérieures en matière d'entraînement et d'inférence par rapport à l'entraînement FP32. Ils permettent des calculs rapides dans des domaines tels que la vision par ordinateur, le traitement du langage naturel, la reconnaissance vocale, la conversion texte-parole et les recommandations personnalisées. Les deux applications les plus remarquables des Tensor Cores sont DLSS (Deep Learning Super Sampling) et AI Denoiser pour la réduction du bruit.
32
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
32
Fonderie
Samsung
Taille de processus
8 nm
Architecture
Ampere

Spécifications de la mémoire

Taille de Mémoire
16GB
Type de Mémoire
LPDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
128bit
Horloge Mémoire
1600MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
102.4 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
14.69 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
29.38 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
3.760 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
940.0 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
1.918 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
8
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
1024
Cache L1
128 KB (per SM)
Cache L2
256KB
TDP
25W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.6
Modèle de shader
6.7
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
16

Benchmarks

FP32 (flottant)
Score
1.918 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
1.856 -3.2%
1.806 -5.8%