NVIDIA GeForce GTX 1080 Ti 12 GB

NVIDIA GeForce GTX 1080 Ti 12 GB

À propos du GPU

La NVIDIA GeForce GTX 1080 Ti 12GB est une GPU puissante et performante qui est un excellent choix pour les passionnés et les joueurs hardcore. Avec une fréquence de base de 1557MHz et une fréquence de boost de 1670MHz, cette GPU offre des performances rapides et fluides, permettant aux utilisateurs de profiter de leurs jeux et applications préférés sans aucun lag ou saccade. Les 12 Go de mémoire GDDR5X offrent un espace ample pour les textures haute résolution et les graphismes complexes, tandis que la fréquence de mémoire de 1376MHz assure un accès rapide aux données, améliorant encore les performances globales. Avec 3200 unités de shading et une consommation énergétique de 250W, la GTX 1080 Ti est capable de gérer même les charges de travail graphiques les plus exigeantes. En termes de performances de jeu, la GTX 1080 Ti est capable de fournir un gameplay fluide et fluide à des résolutions 4K, ce qui en fait un choix idéal pour les joueurs avec des moniteurs haut de gamme. La performance théorique de 10,69 TFLOPS met en évidence la capacité de la GPU à gérer les tâches intensives avec facilité. La GTX 1080 Ti excelle également dans d'autres domaines tels que la création de contenu et le rendu 3D, ce qui en fait une option polyvalente pour les professionnels également. En fin de compte, la NVIDIA GeForce GTX 1080 Ti 12GB est une GPU puissante et fiable qui offre d'excellentes performances dans une large gamme de cas d'utilisation, en en faisant un excellent choix pour quiconque a besoin d'une solution graphique haute performance.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Desktop
Nom du modèle
GeForce GTX 1080 Ti 12 GB
Génération
GeForce 10
Horloge de base
1557MHz
Horloge Boost
1670MHz
Interface de bus
PCIe 3.0 x16

Spécifications de la mémoire

Taille de Mémoire
12GB
Type de Mémoire
GDDR5X
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
320bit
Horloge Mémoire
1376MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
440.3 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
133.6 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
334.0 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
167.0 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
334.0 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
10.904 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
25
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
3200
Cache L1
48 KB (per SM)
Cache L2
0MB
TDP
250W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
10.904 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
10.904 +0%
10.849 -0.5%
10.839 -0.6%