AMD ROG Ally GPU
À propos du GPU
La AMD ROG Ally GPU est une GPU puissante et efficace conçue pour les consoles de jeu. Avec une fréquence de base de 1500 MHz et une fréquence de boost de 2500 MHz, cette GPU offre des performances rapides et fluides, en en un excellent choix pour les amateurs de jeux. Les 16 Go de mémoire LPDDR5 et une fréquence de mémoire de 1600 MHz garantissent que la GPU peut gérer même les jeux et les applications les plus exigeants avec facilité.
Avec 256 unités de nuance et 6 Mo de cache L2, la AMD ROG Ally GPU offre des capacités graphiques impressionnantes, produisant des visuels magnifiques et des expériences de jeu immersives. De plus, le faible TDP de 30W en fait une option économe en énergie, contribuant à réduire la consommation d'énergie et la génération de chaleur.
Avec une performance théorique de 2,56 TFLOPS, la AMD ROG Ally GPU offre des performances impressionnantes pour les jeux et autres tâches intensives en graphiques. Que vous soyez un joueur occasionnel ou un créateur de contenu professionnel, cette GPU est bien équipée pour répondre à vos besoins.
Dans l'ensemble, la AMD ROG Ally GPU est un choix solide pour toute personne ayant besoin d'une GPU haute performance pour leur console de jeu. Ses spécifications impressionnantes, son utilisation d'énergie efficace et ses performances exceptionnelles en font un concurrent de premier plan sur le marché des GPU. Que vous construisiez un nouveau système de jeu ou que vous cherchiez à mettre à niveau votre système actuel, la AMD ROG Ally GPU vaut certainement la peine d'être considérée.
Basique
Nom de l'étiquette
AMD
Plate-forme
Game console
Date de lancement
January 2023
Nom du modèle
ROG Ally GPU
Génération
Console GPU
Horloge de base
1500MHz
Horloge Boost
2500MHz
Transistors
25,390 million
Cœurs RT
4
Unités de calcul
4
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
16
Fonderie
TSMC
Taille de processus
4 nm
Architecture
RDNA 3.0
Spécifications de la mémoire
Taille de Mémoire
16GB
Type de Mémoire
LPDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
64bit
Horloge Mémoire
1600MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
51.20 GB/s
Performance théorique
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
20.00 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
40.00 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
5.120 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
160.0 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
2.509
TFLOPS
Divers
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
256
Cache L1
128 KB per Array
Cache L2
6MB
TDP
30W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
2.1
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Connecteurs d'alimentation
None
Modèle de shader
6.7
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
8
Benchmarks
FP32 (flottant)
Score
2.509
TFLOPS
Comparé aux autres GPU
FP32 (flottant)
/ TFLOPS