AMD Radeon RX 480 Mobile

AMD Radeon RX 480 Mobile

À propos du GPU

Le GPU mobile AMD Radeon RX 480 est une puissante carte graphique conçue pour le jeu mobile et le calcul haute performance. Avec une vitesse d'horloge de base de 1000 MHz et une vitesse d'horloge boostée de 1077 MHz, ce GPU offre des performances rapides et réactives pour une large gamme d'applications. Équipé de 8 Go de mémoire GDDR5 et d'une vitesse d'horloge mémoire de 2000 MHz, le RX 480 offre une mémoire ample et une bande passante pour gérer des jeux exigeants et des logiciels professionnels. Les 2304 unités de texturage offrent d'excellentes capacités de rendu, tandis que les 2 Mo de cache L2 aident à accélérer l'accès et le traitement des données. Avec un TDP de 100W, le RX 480 trouve un bon équilibre entre la consommation d'énergie et les performances, ce qui le rend adapté aux ordinateurs portables et autres appareils mobiles. La performance théorique de 4,963 TFLOPS garantit un rendu graphique fluide, même dans les scénarios de jeu les plus exigeants. Dans l'ensemble, le GPU mobile AMD Radeon RX 480 est un choix solide pour les joueurs et les professionnels qui ont besoin de performances graphiques puissantes sur une plateforme mobile. Sa mémoire ample, ses vitesses d'horloge rapides et sa consommation d'énergie efficace en font une option polyvalente pour une variété d'utilisations. Que vous jouiez aux derniers titres AAA ou que vous exécutiez des simulations complexes, le RX 480 a la puissance pour le gérer facilement.

Basique

Nom de l'étiquette
AMD
Plate-forme
Mobile
Date de lancement
August 2016
Nom du modèle
Radeon RX 480 Mobile
Génération
Mobility Radeon
Horloge de base
1000MHz
Horloge Boost
1077MHz
Interface de bus
MXM-B (3.0)
Transistors
5,700 million
Unités de calcul
36
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
144
Fonderie
GlobalFoundries
Taille de processus
14 nm
Architecture
GCN 4.0

Spécifications de la mémoire

Taille de Mémoire
8GB
Type de Mémoire
GDDR5
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
Horloge Mémoire
2000MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
256.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
34.46 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
155.1 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
4.963 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
310.2 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
5.062 TFLOPS

Divers

Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
2304
Cache L1
16 KB (per CU)
Cache L2
2MB
TDP
100W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.2
Version OpenCL
2.1
OpenGL
4.6
DirectX
12 (12_0)
Connecteurs d'alimentation
None
Modèle de shader
6.4
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
32

Benchmarks

FP32 (flottant)
Score
5.062 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
5.198 +2.7%
5.133 +1.4%
4.922 -2.8%
4.841 -4.4%