AMD Radeon Vega 11 Embedded
Acerca del GPU
La GPU integrada AMD Radeon Vega 11 es una sólida opción de gráficos para aquellos que buscan una GPU confiable y eficiente. Con una frecuencia base de 300MHz y una frecuencia de impulso de 1301MHz, esta GPU ofrece un buen equilibrio entre rendimiento y eficiencia energética. Las 704 unidades de sombreado contribuyen a la capacidad de la GPU para manejar tareas gráficas complejas con facilidad.
Una de las características clave del Radeon Vega 11 es su bajo consumo de energía, con un TDP de solo 35W. Esto lo convierte en una gran elección para aquellos que buscan construir un sistema compacto y eficiente en energía sin sacrificar rendimiento gráfico.
El rendimiento teórico de la GPU de 1.832 TFLOPS significa que es más que capaz de manejar tareas exigentes de renderizado 3D, juegos y multimedia. La memoria compartida del sistema, si bien no es tan potente como la VRAM dedicada, sigue ofreciendo un buen rendimiento general, especialmente para gráficos integrados.
En el uso real, el Radeon Vega 11 se desempeña admirablemente, manejando juegos modernos y tareas multimedia con facilidad. Si bien puede que no pueda igualar el rendimiento de las GPU de gama alta dedicadas, sigue proporcionando una experiencia de juego suave y agradable en configuraciones más bajas.
En general, la GPU integrada AMD Radeon Vega 11 es una sólida elección para aquellos que buscan una solución de gráficos integrados confiable y eficiente en energía. Su combinación de buen rendimiento, bajo consumo de energía y soporte para tecnologías gráficas modernas la convierte en una gran opción para jugadores y constructores de sistemas con presupuesto limitado.
Básico
Nombre de Etiqueta
AMD
Plataforma
Integrated
Fecha de Lanzamiento
February 2018
Nombre del modelo
Radeon Vega 11 Embedded
Generación
Great Horned Owl
Reloj base
300MHz
Reloj de impulso
1301MHz
Interfaz de bus
IGP
Transistores
4,940 million
Unidades de cálculo
11
TMUs
?
Las unidades de mapeo de texturas (TMUs) funcionan como componentes de la GPU, capaces de rotar, escalar y distorsionar imágenes binarias, para luego colocarlas como texturas sobre cualquier plano de un modelo 3D dado. Este proceso se llama mapeo de texturas.
44
Fundición
GlobalFoundries
Tamaño proceso
14 nm
Arquitectura
GCN 5.0
Especificaciones de Memoria
Tamaño de memoria
System Shared
Tipo de memoria
System Shared
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
System Shared
Reloj de memoria
SystemShared
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
System Dependent
Rendimiento teórico
Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
10.41 GPixel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
57.24 GTexel/s
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
3.664 TFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
114.5 GFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
1.795
TFLOPS
Misceláneos
Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
704
TDP
35W
Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.2
OpenCL Versión
2.1
OpenGL
4.6
DirectX
12 (12_1)
Conectores de alimentación
None
Modelo de sombreado
6.4
ROPs
?
La tubería de operaciones raster (ROPs) es principalmente responsable de manejar los cálculos de iluminación y reflexión en los juegos, así como de administrar efectos como el anti-aliasing (AA), alta resolución, humo y fuego. Cuanto más exigentes sean el anti-aliasing y los efectos de iluminación en un juego, mayores serán los requisitos de rendimiento para los ROPs; de lo contrario, puede resultar en una caída brusca en la velocidad de fotogramas.
8
Clasificaciones
FP32 (flotante)
Puntaje
1.795
TFLOPS
Comparado con Otras GPU
FP32 (flotante)
/ TFLOPS