NVIDIA GeForce RTX 3050 Ti Mobile
About GPU
The NVIDIA GeForce RTX 3050 Ti Mobile GPU is a solid option for gamers and content creators looking for reliable performance in a mobile package. With a base clock of 735MHz and a boost clock of 1035MHz, this GPU offers respectable speeds for running the latest games and handling demanding creative workloads.
The 4GB GDDR6 memory provides ample memory for most gaming and creative tasks, while the 1500MHz memory clock ensures smooth and responsive performance. With 2560 shading units and 2MB of L2 cache, the RTX 3050 Ti offers impressive power for a mobile GPU, allowing users to enjoy high-quality visuals and smooth frame rates.
With a TDP of 75W, this GPU strikes a good balance between performance and power efficiency, making it a suitable choice for laptops where power consumption is a concern. Its theoretical performance of 5.299 TFLOPS and 3DMark Time Spy score of 5379 further demonstrate its capability to handle demanding tasks.
Overall, the NVIDIA GeForce RTX 3050 Ti Mobile GPU is a strong contender for those looking for a reliable and powerful mobile graphics solution. Its combination of performance, efficiency, and features make it a compelling choice for gaming laptops and creative-focused notebooks. Whether you're into gaming or content creation, the RTX 3050 Ti delivers the performance and features necessary to handle a wide range of tasks.
Basic
Label Name
NVIDIA
Platform
Mobile
Launch Date
May 2021
Model Name
GeForce RTX 3050 Ti Mobile
Generation
GeForce 30 Mobile
Base Clock
735MHz
Boost Clock
1035MHz
Bus Interface
PCIe 4.0 x16
Transistors
12,000 million
RT Cores
20
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
80
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
80
Foundry
Samsung
Process Size
8 nm
Architecture
Ampere
Memory Specifications
Memory Size
4GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1500MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
192.0 GB/s
Theoretical Performance
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
33.12 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
82.80 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
5.299 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
82.80 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
5.193
TFLOPS
Miscellaneous
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
20
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2560
L1 Cache
128 KB (per SM)
L2 Cache
2MB
TDP
75W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.6
Power Connectors
None
Shader Model
6.7
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Benchmarks
FP32 (float)
Score
5.193
TFLOPS
3DMark Time Spy
Score
5271
Blender
Score
1484
OctaneBench
Score
162
Compared to Other GPU
FP32 (float)
/ TFLOPS
3DMark Time Spy
Blender
OctaneBench