NVIDIA Jetson Orin Nano 8 GB

NVIDIA Jetson Orin Nano 8 GB

Über GPU

Die NVIDIA Jetson Orin Nano 8GB GPU ist eine beeindruckende Ergänzung der Jetson-Reihe und bietet professionelle Leistung in einem kompakten und energieeffizienten Paket. Mit 8 GB LPDDR5-Speicher und einem Speichertakt von 1067 MHz ist der Orin Nano in der Lage, anspruchsvolle Arbeitslasten mühelos zu bewältigen. Eine herausragende Funktion dieser GPU sind die 1024 Shading-Einheiten, die hochwertiges Rendern und komplexe visuelle Effekte ermöglichen. Darüber hinaus hilft der 256 KB L2-Cache, Latenzzeiten zu minimieren und die Gesamtsystemleistung zu verbessern. Trotz seiner hohen Leistungsfähigkeit ist der Orin Nano unglaublich stromeffizient, mit einem TDP von nur 15W. Dies macht ihn zu einer idealen Wahl für Anwendungen, bei denen der Stromverbrauch eine Rolle spielt, wie zum Beispiel Edge-Computing und Robotik. In Bezug auf Leistungsfähigkeit ist der Orin Nano in der Lage, eine theoretische Leistung von 1,28 TFLOPS zu liefern und eignet sich somit hervorragend für eine Vielzahl professioneller Arbeitslasten, einschließlich KI-Inferenz, Computer Vision und Robotik. Insgesamt ist die NVIDIA Jetson Orin Nano 8GB GPU ein beeindruckendes Stück Hardware, das die perfekte Balance zwischen Leistung, Energieeffizienz und kompakter Form bietet. Egal, ob Sie KI-Anwendungen entwickeln, Deep-Learning-Modelle ausführen oder fortschrittliche visuelle Effekte erstellen, der Orin Nano ist eine vielseitige und leistungsfähige Lösung, die es sich lohnt zu berücksichtigen.

Basic

Markenname
NVIDIA
Plattform
Professional
Erscheinungsdatum
March 2023
Modellname
Jetson Orin Nano 8 GB
Generation
Tegra
Bus-Schnittstelle
PCIe 4.0 x4

Speicherspezifikationen

Speichergröße
8GB
Speichertyp
LPDDR5
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
128bit
Speichertakt
1067MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
68.29 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
10.00 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
20.00 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
2.560 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
640.0 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
1.306 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
8
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
1024
L1-Cache
128 KB (per SM)
L2-Cache
256KB
TDP (Thermal Design Power)
15W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0

Benchmarks

FP32 (float)
Punktzahl
1.306 TFLOPS

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
1.318 +0.9%
1.305 -0.1%