NVIDIA GeForce GTX 1060 6 GB 9Gbps

NVIDIA GeForce GTX 1060 6 GB 9Gbps

Über GPU

Die NVIDIA GeForce GTX 1060 6GB 9Gbps GPU ist eine solide Mittelklasse-Grafikkarte, die eine ausgezeichnete Leistung für 1080p-Gaming bietet und sogar einige 1440p-Spiele leicht bewältigt. Mit einer Basistaktung von 1506MHz und einer Boost-Taktung von 1709MHz liefert diese GPU gleichmäßige und konsistente Bildraten in den meisten modernen Spielen. Die 6GB GDDR5-Speicher und eine Speichertaktung von 2257MHz sorgen dafür, dass die GTX 1060 hochauflösende Texturen und größere Spielwelten ohne Probleme bewältigen kann. Die 1280 Shading-Einheiten bieten ausreichend Rechenleistung für die Darstellung komplexer visueller Effekte, und die 4,375 TFLOPS theoretische Leistung machen diese GPU zu einer großartigen Wahl für Gamer, die eine ausgewogene Leistung und Erschwinglichkeit suchen. Die 120W TDP der GTX 1060 machen sie im Vergleich zu High-End-GPUs relativ stromsparend. Das bedeutet, dass sie keine übermäßig leistungsstarke oder teure Stromversorgung benötigt, um in einem Gaming-Rig reibungslos zu laufen. Insgesamt ist die NVIDIA GeForce GTX 1060 6GB 9Gbps GPU eine großartige Option für preisbewusste Gamer, die ein reibungs- und immersives Spielerlebnis in 1080p- oder 1440p-Auflösungen erleben möchten. Ihre Kombination aus Leistung, Energieeffizienz und Erschwinglichkeit macht sie zu einem starken Konkurrenten auf dem Markt für Mittelklasse-GPUs. Egal, ob Sie die neuesten AAA-Titel spielen oder in die Welt der virtuellen Realität eintauchen, die GTX 1060 liefert ein beeindruckendes Spielerlebnis.

Basic

Markenname
NVIDIA
Plattform
Desktop
Erscheinungsdatum
April 2017
Modellname
GeForce GTX 1060 6 GB 9Gbps
Generation
GeForce 10
Basis-Takt
1506MHz
Boost-Takt
1709MHz
Bus-Schnittstelle
PCIe 3.0 x16
Transistoren
4,400 million
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
80
Foundry
TSMC
Prozessgröße
16 nm
Architektur
Pascal

Speicherspezifikationen

Speichergröße
6GB
Speichertyp
GDDR5
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
192bit
Speichertakt
2257MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
216.7 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
82.03 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
136.7 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
68.36 GFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
136.7 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
4.287 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
10
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
1280
L1-Cache
48 KB (per SM)
L2-Cache
1536KB
TDP (Thermal Design Power)
120W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
6.1
Stromanschlüsse
1x 6-pin
Shader-Modell
6.4
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
48
Empfohlene PSU (Stromversorgung)
300W

Benchmarks

FP32 (float)
Punktzahl
4.287 TFLOPS

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
4.579 +6.8%
4.387 +2.3%
4.186 -2.4%