NVIDIA A800 SXM4 80 GB

NVIDIA A800 SXM4 80 GB

Über GPU

Die NVIDIA A800 SXM4 80GB GPU ist eine leistungsstarke professionelle Grafikverarbeitungseinheit, die für die anspruchsvollen Anforderungen moderner Rechenzentren und Rechenlasten konzipiert wurde. Mit einem Basistakt von 1155 MHz und einem Boost-Takt von 1410 MHz liefert diese GPU eine außergewöhnliche Verarbeitungsleistung und Geschwindigkeit für eine Vielzahl von Anwendungen. Eine herausragende Eigenschaft des A800 ist sein massiver 80 GB HBM2e-Speicher, der die Verarbeitung und Speicherung großer Datensätze problemlos ermöglicht. Die hohe Speichertaktgeschwindigkeit von 1593 MHz stellt sicher, dass Daten effizient abgerufen und genutzt werden können, was zu einer verbesserten Gesamtleistung führt. Mit beeindruckenden 6912 Shader-Einheiten und 40 MB L2-Cache ist der A800 in der Lage, komplexe Grafik- und Rechenlasten mühelos zu bewältigen. Seine beeindruckende theoretische Leistung von 19,49 TFLOPS macht ihn für Aufgaben im Bereich des Tiefenlernens, der künstlichen Intelligenz und wissenschaftlichen Berechnungen gut geeignet. Trotz seiner leistungsstarken Fähigkeiten hat der A800 eine hohe, 400 W TDP, was ausreichende Kühlung und Stromversorgungslösungen erfordert, um optimal zu funktionieren. Insgesamt ist die NVIDIA A800 SXM4 80GB GPU eine Kraftpakete einer Grafikverarbeitungseinheit, ideal für Fachleute und Organisationen, die Spitzenleistungen für ihre Rechenzentren und Rechenbedürfnisse benötigen. Ihre hohe Speicherkapazität, schnellen Taktraten und robusten Shader-Einheiten machen sie zu einem wertvollen Gut für eine Vielzahl rechenintensiver Workloads.

Basic

Markenname
NVIDIA
Plattform
Professional
Erscheinungsdatum
August 2022
Modellname
A800 SXM4 80 GB
Generation
Ampere
Basis-Takt
1155MHz
Boost-Takt
1410MHz
Bus-Schnittstelle
PCIe 4.0 x16
Transistoren
54,200 million
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
432
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
432
Foundry
TSMC
Prozessgröße
7 nm
Architektur
Ampere

Speicherspezifikationen

Speichergröße
80GB
Speichertyp
HBM2e
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
5120bit
Speichertakt
1593MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
2039 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
225.6 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
609.1 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
77.97 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
9.746 TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
19.1 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
108
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
6912
L1-Cache
192 KB (per SM)
L2-Cache
40MB
TDP (Thermal Design Power)
400W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
N/A
OpenCL-Version
3.0
OpenGL
N/A
DirectX
N/A
CUDA
8.0
Stromanschlüsse
None
Shader-Modell
N/A
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
160
Empfohlene PSU (Stromversorgung)
800W

Benchmarks

FP32 (float)
Punktzahl
19.1 TFLOPS

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
21.315 +11.6%
19.88 +4.1%
17.615 -7.8%