NVIDIA Quadro RTX 3000 Mobile
О видеокарте
Графический процессор NVIDIA Quadro RTX 3000 Mobile - мощный профессиональный графический процессор, разработанный для выполнения вычислительных задач высокой производительности. С базовой частотой ядра 945МГц и максимальной частотой boost 1380МГц этот GPU способен легко справляться с интенсивными нагрузками. 6 ГБ памяти GDDR6 и частота памяти 1750МГц обеспечивают быструю и эффективную обработку данных, делая его идеальным выбором для профессионалов, работающих в областях, таких как 3D-рендеринг, анимация и научные симуляции.
Одной из ключевых особенностей Quadro RTX 3000 является наличие 1920 шейдерных юнитов, которые позволяют выполнить сложную и реалистичную рендеринг графики. Кроме того, наличие 3МБ кэша L2 способствует обеспечению быстрого доступа к данным и их обработки, дополнительно улучшая производительность GPU.
С ТПД 80Вт Quadro RTX 3000 создан для обеспечения высокой производительности при соблюдении энергоэффективности, что делает его подходящим для использования в мобильных рабочих станциях.
Теоретическая производительность 5,299 TFLOPS обеспечивает возможность Quadro RTX 3000 эффективно справляться с требовательными вычислительными задачами, обеспечивая пользователям плавный и эффективный рабочий процесс.
В целом графический процессор NVIDIA Quadro RTX 3000 Mobile - крепкий выбор для профессионалов, нуждающихся в надежном и мощном графическом процессоре для выполнения интенсивных вычислительных задач. Его сочетание высоких частот ядра, достаточного объема памяти и эффективного использования энергии делает его идеальным для широкого круга профессиональных приложений.
Общая информация
Производитель
NVIDIA
Платформа
Professional
Дата выпуска
May 2019
Название модели
Quadro RTX 3000 Mobile
Поколение
Quadro Mobile
Базоввая частота
945MHz
Boost Частота
1380MHz
Интерфейс шины
PCIe 3.0 x16
Транзисторы
10,800 million
RT ядра
30
Tensor ядра
?
Тензорные ядра — это специализированные процессоры, разработанные специально для глубокого обучения, обеспечивающие более высокую производительность обучения и вывода по сравнению с обучением FP32. Они позволяют выполнять быстрые вычисления в таких областях, как компьютерное зрение, обработка естественного языка, распознавание речи, преобразование текста в речь и персонализированные рекомендации. Два наиболее заметных применения тензорных ядер — это DLSS (Deep Learning Super Sampling) и AI Denoiser для снижения шума.
240
TMU
?
Блоки наложения текстур (TMU) служат компонентами графического процессора, которые способны вращать, масштабировать и искажать двоичные изображения, а затем размещать их в виде текстур на любой плоскости заданной трехмерной модели. Этот процесс называется отображением текстур.
120
Производитель
TSMC
Размер процесса
12 nm
Архитектура
Turing
Характеристики памяти
Объем памяти
6GB
Тип памяти
GDDR6
Шина памяти
?
Ширина шины памяти обозначает количество бит данных, которые видеопамять может передать за один такт. Чем больше ширина шины, тем больший объем данных может быть передан мгновенно, что делает ее одним из важнейших параметров видеопамяти. Пропускная способность памяти рассчитывается как: Пропускная способность памяти = Частота памяти x Ширина шины памяти / 8. Следовательно, если частоты памяти одинаковы, ширина шины памяти будет определять размер пропускной способности памяти.
192bit
Частота памяти
1750MHz
Пропускная способность
?
Пропускная способность памяти — это скорость передачи данных между графическим чипом и видеопамятью. Он измеряется в байтах в секунду, и формула для его расчета: пропускная способность памяти = рабочая частота × ширина шины памяти / 8 бит.
336.0 GB/s
Теоретическая производительность
Пиксельный филлрейт
?
Скорость заполнения пикселей — это количество пикселей, которые графический процессор (GPU) может визуализировать в секунду, измеряется в мегапикселях/с (миллион пикселей в секунду) или GPixels/s (миллиард пикселей в секунду). Это наиболее часто используемый показатель для оценки производительности обработки пикселей видеокарты.
88.32 GPixel/s
Текстурный филлрейт
?
Скорость заполнения текстуры — это количество элементов карты текстур (текселей), которые графический процессор может сопоставить с пикселями за одну секунду.
165.6 GTexel/s
FP16 (half)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности.
10.60 TFLOPS
FP64 (double)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности, а числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
165.6 GFLOPS
FP32 (float)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
5.193
TFLOPS
Другое
Потоковый мультипроцессор (SM)
?
Несколько потоковых процессоров (SP) вместе с другими ресурсами образуют потоковый мультипроцессор (SM), который также называется основным ядром графического процессора. Эти дополнительные ресурсы включают в себя такие компоненты, как планировщики деформации, регистры и общую память. SM можно считать сердцем графического процессора, аналогично ядру ЦП, при этом регистры и общая память являются дефицитными ресурсами внутри SM.
30
Блоки шейдинга
?
Самым фундаментальным процессором является потоковый процессор (SP), в котором выполняются определенные инструкции и задачи. Графические процессоры выполняют параллельные вычисления, что означает, что несколько процессоров SP работают одновременно для обработки задач.
1920
Кэш L1
64 KB (per SM)
Кэш L2
3MB
TDP
80W
Версия Vulkan
?
Vulkan — это кроссплатформенный графический и вычислительный API от Khronos Group, предлагающий высокую производительность и низкую нагрузку на процессор. Он позволяет разработчикам напрямую управлять графическим процессором, снижает затраты на рендеринг и поддерживает многопоточные и многоядерные процессоры.
1.3
Версия OpenCL
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
7.5
Разъемы питания
None
Шейдерная модель
6.6
ROP
?
Конвейер растровых операций (ROP) в первую очередь отвечает за расчеты освещения и отражений в играх, а также за управление такими эффектами, как сглаживание (AA), высокое разрешение, дым и огонь. Чем более требовательны к сглаживанию и световым эффектам в игре, тем выше требования к производительности для ROP; в противном случае это может привести к резкому падению частоты кадров.
64
Бенчмарки
FP32 (float)
5.193
TFLOPS
По сравнению с другими GPU
FP32 (float)
/ TFLOPS