NVIDIA GeForce RTX 3050 Max-Q Refresh

NVIDIA GeForce RTX 3050 Max-Q Refresh

О видеокарте

Графический процессор NVIDIA GeForce RTX 3050 Max-Q Refresh - это высокопроизводительное и эффективное мобильное графическое устройство, которое предлагает отличное сочетание производительности и энергоэффективности. С базовой частотой тика 622 МГц и частотой буста 990 МГц этот GPU обеспечивает плавное и отзывчивое игровое и графически интенсивные задачи. 6 ГБ памяти GDDR6 с частотой памяти 1500 МГц обеспечивает быстрый доступ к текстурам и ресурсам, что обеспечивает безупречный визуальный опыт. С 2048 шейдерными блоками и 2 МБ кэш-памяти L2, GPU RTX 3050 Max-Q Refresh обеспечивает впечатляющее качество изображения и возможности рендеринга. 75-ваттное TDP (термическая энергопотребление) гарантирует, что GPU работает в разумных пределах энергопотребления, что делает его идеальным для использования в тонких и легких ноутбуках без ущерба производительности. Теоретическая производительность 4,055 TFLOPS демонстрирует способность GPU с легкостью справляться с современными играми и творческими нагрузками. Будь то игры, редактирование фото и видео или 3D-рендеринг, GPU RTX 3050 Max-Q Refresh обеспечивает плавный и эффективный опыт. В целом, графический процессор NVIDIA GeForce RTX 3050 Max-Q Refresh - это надежное и эффективное мобильное графическое решение для пользователей. Он находит хороший баланс между производительностью и энергоэффективностью, что делает его отличным выбором для ноутбуков, ориентированных как на игроков, так и на творческих профессионалов.

Общая информация

Производитель
NVIDIA
Платформа
Mobile
Дата выпуска
July 2022
Название модели
GeForce RTX 3050 Max-Q Refresh
Поколение
GeForce 30 Mobile
Базоввая частота
622MHz
Boost Частота
990MHz
Интерфейс шины
PCIe 4.0 x8

Характеристики памяти

Объем памяти
6GB
Тип памяти
GDDR6
Шина памяти
?
Ширина шины памяти обозначает количество бит данных, которые видеопамять может передать за один такт. Чем больше ширина шины, тем больший объем данных может быть передан мгновенно, что делает ее одним из важнейших параметров видеопамяти. Пропускная способность памяти рассчитывается как: Пропускная способность памяти = Частота памяти x Ширина шины памяти / 8. Следовательно, если частоты памяти одинаковы, ширина шины памяти будет определять размер пропускной способности памяти.
96bit
Частота памяти
1500MHz
Пропускная способность
?
Пропускная способность памяти — это скорость передачи данных между графическим чипом и видеопамятью. Он измеряется в байтах в секунду, и формула для его расчета: пропускная способность памяти = рабочая частота × ширина шины памяти / 8 бит.
144.0 GB/s

Теоретическая производительность

Пиксельный филлрейт
?
Скорость заполнения пикселей — это количество пикселей, которые графический процессор (GPU) может визуализировать в секунду, измеряется в мегапикселях/с (миллион пикселей в секунду) или GPixels/s (миллиард пикселей в секунду). Это наиболее часто используемый показатель для оценки производительности обработки пикселей видеокарты.
31.68 GPixel/s
Текстурный филлрейт
?
Скорость заполнения текстуры — это количество элементов карты текстур (текселей), которые графический процессор может сопоставить с пикселями за одну секунду.
63.36 GTexel/s
FP16 (half)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности.
4.055 TFLOPS
FP64 (double)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности, а числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
63.36 GFLOPS
FP32 (float)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
4.136 TFLOPS

Другое

Потоковый мультипроцессор (SM)
?
Несколько потоковых процессоров (SP) вместе с другими ресурсами образуют потоковый мультипроцессор (SM), который также называется основным ядром графического процессора. Эти дополнительные ресурсы включают в себя такие компоненты, как планировщики деформации, регистры и общую память. SM можно считать сердцем графического процессора, аналогично ядру ЦП, при этом регистры и общая память являются дефицитными ресурсами внутри SM.
16
Блоки шейдинга
?
Самым фундаментальным процессором является потоковый процессор (SP), в котором выполняются определенные инструкции и задачи. Графические процессоры выполняют параллельные вычисления, что означает, что несколько процессоров SP работают одновременно для обработки задач.
2048
Кэш L1
128 KB (per SM)
Кэш L2
2MB
TDP
75W
Версия Vulkan
?
Vulkan — это кроссплатформенный графический и вычислительный API от Khronos Group, предлагающий высокую производительность и низкую нагрузку на процессор. Он позволяет разработчикам напрямую управлять графическим процессором, снижает затраты на рендеринг и поддерживает многопоточные и многоядерные процессоры.
1.3
Версия OpenCL
3.0

Бенчмарки

FP32 (float)
4.136 TFLOPS

По сравнению с другими GPU

FP32 (float) / TFLOPS
4.15 +0.3%
4.14 +0.1%
4.135 -0%
4.114 -0.5%