AMD Radeon RX Vega Nano
О видеокарте
AMD Radeon RX Vega Nano - мощное, высокопроизводительное графическое ядро, разработанное для настольного гейминга и создания контента. С базовой частотой 1247МГц и частотой буста 1546МГц, это графическое ядро обеспечивает плавный, отзывчивый геймплей и быстрые времена рендеринга для требовательных приложений.
Одной из ключевых особенностей RX Vega Nano является 8ГБ памяти HBM2, обеспечивающей высокую пропускную способность и низкую задержку для улучшения производительности. Частота памяти 800МГц дополнительно повышает способность графического ядра быстро обрабатывать и хранить большие объемы данных, что приводит к безперебойному мультитаскингу и плавной визуализации.
С 4096 блоками шейдеров и 4МБ кэша L2, RX Vega Nano способен легко обрабатывать сложные графику и вычисления. Его TDP 175Вт обеспечивает эффективное использование энергии без ущерба производительности, делая его отличным выбором для пользователей, которые хотят баланс между мощностью и энергоэффективностью.
Теоретическая производительность 12,66 TFLOPS говорит о способности графического ядра обрабатывать требовательные задачи, такие как 3D-рендеринг, видеомонтаж и игры высокого разрешения. В общем и целом, AMD Radeon RX Vega Nano - это верхний графический процессор, предлагающий выдающуюся производительность и возможности как для энтузиастов, так и для профессионалов. Независимо от того, являетесь ли вы заядлым геймером или создателем контента, это графическое ядро обязательно вас порадует своей скоростью, мощностью и надежностью.
Общая информация
Производитель
AMD
Платформа
Desktop
Название модели
Radeon RX Vega Nano
Поколение
Vega
Базоввая частота
1247MHz
Boost Частота
1546MHz
Интерфейс шины
PCIe 3.0 x16
Транзисторы
12,500 million
Вычислительные юниты
64
TMU
?
Блоки наложения текстур (TMU) служат компонентами графического процессора, которые способны вращать, масштабировать и искажать двоичные изображения, а затем размещать их в виде текстур на любой плоскости заданной трехмерной модели. Этот процесс называется отображением текстур.
256
Производитель
GlobalFoundries
Размер процесса
14 nm
Архитектура
GCN 5.0
Характеристики памяти
Объем памяти
8GB
Тип памяти
HBM2
Шина памяти
?
Ширина шины памяти обозначает количество бит данных, которые видеопамять может передать за один такт. Чем больше ширина шины, тем больший объем данных может быть передан мгновенно, что делает ее одним из важнейших параметров видеопамяти. Пропускная способность памяти рассчитывается как: Пропускная способность памяти = Частота памяти x Ширина шины памяти / 8. Следовательно, если частоты памяти одинаковы, ширина шины памяти будет определять размер пропускной способности памяти.
2048bit
Частота памяти
800MHz
Пропускная способность
?
Пропускная способность памяти — это скорость передачи данных между графическим чипом и видеопамятью. Он измеряется в байтах в секунду, и формула для его расчета: пропускная способность памяти = рабочая частота × ширина шины памяти / 8 бит.
409.6 GB/s
Теоретическая производительность
Пиксельный филлрейт
?
Скорость заполнения пикселей — это количество пикселей, которые графический процессор (GPU) может визуализировать в секунду, измеряется в мегапикселях/с (миллион пикселей в секунду) или GPixels/s (миллиард пикселей в секунду). Это наиболее часто используемый показатель для оценки производительности обработки пикселей видеокарты.
98.94 GPixel/s
Текстурный филлрейт
?
Скорость заполнения текстуры — это количество элементов карты текстур (текселей), которые графический процессор может сопоставить с пикселями за одну секунду.
395.8 GTexel/s
FP64 (double)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности, а числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
791.6 GFLOPS
FP32 (float)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
12.913
TFLOPS
Другое
Блоки шейдинга
?
Самым фундаментальным процессором является потоковый процессор (SP), в котором выполняются определенные инструкции и задачи. Графические процессоры выполняют параллельные вычисления, что означает, что несколько процессоров SP работают одновременно для обработки задач.
4096
Кэш L1
16 KB (per CU)
Кэш L2
4MB
TDP
175W
Версия Vulkan
?
Vulkan — это кроссплатформенный графический и вычислительный API от Khronos Group, предлагающий высокую производительность и низкую нагрузку на процессор. Он позволяет разработчикам напрямую управлять графическим процессором, снижает затраты на рендеринг и поддерживает многопоточные и многоядерные процессоры.
1.2
Версия OpenCL
2.1
OpenGL
4.6
DirectX
12 (12_1)
Разъемы питания
1x 8-pin
Шейдерная модель
6.4
ROP
?
Конвейер растровых операций (ROP) в первую очередь отвечает за расчеты освещения и отражений в играх, а также за управление такими эффектами, как сглаживание (AA), высокое разрешение, дым и огонь. Чем более требовательны к сглаживанию и световым эффектам в игре, тем выше требования к производительности для ROP; в противном случае это может привести к резкому падению частоты кадров.
64
Требуемый блок питания
450W
Бенчмарки
FP32 (float)
12.913
TFLOPS
По сравнению с другими GPU
FP32 (float)
/ TFLOPS