NVIDIA Tesla T10

NVIDIA Tesla T10

À propos du GPU

La carte graphique Tesla T10 de NVIDIA est une unité de traitement graphique puissante et haute performance conçue pour un usage professionnel. Avec une vitesse d'horloge de base de 1305 MHz et une vitesse d'horloge de boost de 1560 MHz, cette carte graphique est capable de fournir des performances exceptionnelles pour une large gamme d'applications professionnelles. L'une des caractéristiques les plus impressionnantes du Tesla T10 est sa mémoire GDDR6 massive de 24 Go, qui permet de traiter facilement des ensembles de données volumineux et complexes. De plus, les 4608 unités de ombrage et les 6 Mo de cache L2 contribuent davantage à la capacité de la carte graphique à gérer des charges de travail exigeantes. Le TDP de 260W peut être élevé, mais c'est un compromis nécessaire pour la puissance de traitement immense et les performances théoriques de 14,38 TFLOPS que cette carte graphique offre. Ces spécifications impressionnantes font du Tesla T10 un choix idéal pour les professionnels travaillant dans des domaines tels que l'analyse de données, la recherche scientifique et le développement de l'IA. De plus, le support du T10 pour une large gamme d'applications professionnelles, notamment l'apprentissage automatique, l'apprentissage en profondeur et l'informatique hautes performances, en fait un outil polyvalent et précieux pour les professionnels ayant besoin de puissance de traitement de pointe. En conclusion, la carte graphique Tesla T10 de NVIDIA est une solution haut de gamme pour les professionnels recherchant des performances et une fiabilité intransigeantes. Avec ses spécifications impressionnantes et ses capacités de performances robustes, elle convient parfaitement à une large gamme d'applications et de charges de travail professionnelles.

Basique

Nom de l'étiquette
NVIDIA
Plate-forme
Professional
Nom du modèle
Tesla T10
Génération
Tesla
Horloge de base
1305MHz
Horloge Boost
1560MHz
Interface de bus
PCIe 3.0 x16

Spécifications de la mémoire

Taille de Mémoire
24GB
Type de Mémoire
GDDR6
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
384bit
Horloge Mémoire
1625MHz
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
624.0 GB/s

Performance théorique

Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
149.8 GPixel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
449.3 GTexel/s
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
28.75 TFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
449.3 GFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
14.668 TFLOPS

Divers

Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
72
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
4608
Cache L1
64 KB (per SM)
Cache L2
6MB
TDP
260W
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
Version OpenCL
3.0

Benchmarks

FP32 (flottant)
Score
14.668 TFLOPS

Comparé aux autres GPU

FP32 (flottant) / TFLOPS
14.808 +1%
14.668
14.602 -0.4%