AMD Radeon Vega 6 Mobile

AMD Radeon Vega 6 Mobile

About GPU

The AMD Radeon Vega 6 Mobile GPU is a solid integrated graphics option for the average user. With a base clock speed of 300MHz and a boost clock of 1600MHz, it offers decent performance for everyday tasks and light gaming. The memory size and type are system shared, allowing for flexibility in resource allocation, and the shading units at 384 contribute to overall smooth and responsive performance. With a TDP of 45W, the Vega 6 strikes a good balance between power consumption and performance, making it suitable for use in a wide range of laptops. The theoretical performance of 1.229 TFLOPS and the 3DMark Time Spy score of 949 indicate that this GPU can handle casual gaming and multimedia tasks well, although it may struggle with more demanding games or high-resolution video editing. One of the main selling points of the AMD Radeon Vega 6 Mobile GPU is its affordability and accessibility. It comes integrated into various Ryzen processors, making it a convenient option for budget-conscious consumers who don't require top-of-the-line graphics performance. Overall, the AMD Radeon Vega 6 Mobile GPU is a reliable choice for casual users and those who prioritize efficiency and cost-effectiveness. While it may not meet the demands of avid gamers or professional content creators, it offers a solid foundation for everyday computing needs.

Basic

Label Name
AMD
Platform
Integrated
Launch Date
April 2021
Model Name
Radeon Vega 6 Mobile
Generation
Cezanne
Base Clock
300MHz
Boost Clock
1600MHz
Bus Interface
IGP

Memory Specifications

Memory Size
System Shared
Memory Type
System Shared
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
System Shared
Memory Clock
SystemShared
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
System Dependent

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
12.80 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
38.40 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
2.458 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
76.80 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
1.254 TFLOPS

Miscellaneous

Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
384
TDP
45W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.1

Benchmarks

FP32 (float)
Score
1.254 TFLOPS
3DMark Time Spy
Score
968

Compared to Other GPU

FP32 (float) / TFLOPS
1.242 -1%
1.242 -1%
3DMark Time Spy
984 +1.7%
821 -15.2%