NVIDIA Tesla K40d
Über GPU
Die NVIDIA Tesla K40d GPU ist eine leistungsfähige professionelle Plattform, die für die Datenverarbeitung und wissenschaftliche Simulationen konzipiert wurde. Mit einer Basistaktung von 745 MHz und einer Boost-Taktung von 876 MHz bietet diese GPU beeindruckende Geschwindigkeit und Effizienz für komplexe Rechenaufgaben. Ihre 12 GB GDDR5-Speicher und eine Speichertaktung von 1502 MHz bieten ausreichend Speicherkapazität und schnellen Datenzugriff, was sie ideal für groß angelegte Simulationen und Datenanalysen macht.
Der Tesla K40d verfügt über 2880 Shading-Einheiten und 1536 KB L2-Cache, was seine Fähigkeit zur parallelen Verarbeitung und komplexen Algorithmen further verbessert. Mit einer TDP von 245W liefert diese GPU leistungsstarke Performance und bleibt dabei energieeffizient.
Eine der herausragenden Eigenschaften der NVIDIA Tesla K40d ist ihre theoretische Leistung von beeindruckenden 5,046 TFLOPS. Diese Leistungsfähigkeit macht sie für eine Vielzahl von professionellen Anwendungen, einschließlich Deep Learning, wissenschaftlicher Berechnungen und technischer Simulationen, besonders geeignet.
Insgesamt ist die NVIDIA Tesla K40d GPU eine Top-Lösung für Fachleute, die eine leistungsstarke Rechenleistung benötigen. Ihre Kombination aus Geschwindigkeit, Speicherkapazität und fortgeschrittenen Funktionen macht sie zu einem wertvollen Werkzeug für datenintensive Aufgaben und anspruchsvolle Rechenlasten. Ob für wissenschaftliche Forschung, technische Simulationen oder maschinelles Lernen, der Tesla K40d bietet die Leistung und Zuverlässigkeit, die Fachleute fordern.
Basic
Markenname
NVIDIA
Plattform
Professional
Erscheinungsdatum
November 2013
Modellname
Tesla K40d
Generation
Tesla
Basis-Takt
745MHz
Boost-Takt
876MHz
Bus-Schnittstelle
PCIe 3.0 x16
Transistoren
7,080 million
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
240
Foundry
TSMC
Prozessgröße
28 nm
Architektur
Kepler
Speicherspezifikationen
Speichergröße
12GB
Speichertyp
GDDR5
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
384bit
Speichertakt
1502MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
288.4 GB/s
Theoretische Leistung
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
52.56 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
210.2 GTexel/s
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
1.682 TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
4.945
TFLOPS
Verschiedenes
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
2880
L1-Cache
16 KB (per SMX)
L2-Cache
1536KB
TDP (Thermal Design Power)
245W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.1
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 (11_1)
CUDA
3.5
Shader-Modell
5.1
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
48
Empfohlene PSU (Stromversorgung)
550W
Benchmarks
FP32 (float)
Punktzahl
4.945
TFLOPS
Im Vergleich zu anderen GPUs
FP32 (float)
/ TFLOPS