NVIDIA Tesla V100 SXM3 32 GB

NVIDIA Tesla V100 SXM3 32 GB

О видеокарте

Графический процессор NVIDIA Tesla V100 SXM3 32 ГБ - мощное и эффективное решение, разработанное для профессионального использования. С базовой тактовой частотой 1290 МГц и максимальной тактовой частотой 1530 МГц этот GPU обеспечивает исключительную производительность для сложных рабочих нагрузок. 32 ГБ памяти HBM2 и частота памяти 876 МГц гарантируют эффективную обработку больших наборов данных, что делает его идеальным для глубокого обучения, искусственного интеллекта и других задач, требующих больших объемов данных. С 5120 шейдерными блоками и 6 МБ кэш-памяти L2 Tesla V100 SXM3 предлагает беспрецедентные вычислительные возможности, позволяя пользователям легко справляться с сложными вычислительными задачами. Кроме того, с ТПД в 250 Вт, этот GPU обеспечивает высокую производительность при сохранении энергоэффективности. Теоретическая производительность 15,67 TFLOPS дальше демонстрирует вычислительную мощность этого GPU, делая его идеальным выбором для профессионалов, которые нуждаются в быстрой обработке и анализе данных. В целом, графический процессор NVIDIA Tesla V100 SXM3 32 ГБ - это передовое решение для профессионалов, работающих в областях машинного обучения, анализа данных и научных вычислений. Его впечатляющие технические характеристики и надежная производительность делают его ценным активом для любой организации, которая стремится использовать мощность ускоренного вычисления. Хотя цена может быть важным фактором для некоторых, производительность и возможности этого GPU делают его ценным инвестированием для тех, кто имеет высокие вычислительные требования.

Общая информация

Производитель
NVIDIA
Платформа
Professional
Дата выпуска
March 2018
Название модели
Tesla V100 SXM3 32 GB
Поколение
Tesla
Базоввая частота
1290MHz
Boost Частота
1530MHz
Интерфейс шины
PCIe 3.0 x16
Транзисторы
21,100 million
Tensor ядра
?
Тензорные ядра — это специализированные процессоры, разработанные специально для глубокого обучения, обеспечивающие более высокую производительность обучения и вывода по сравнению с обучением FP32. Они позволяют выполнять быстрые вычисления в таких областях, как компьютерное зрение, обработка естественного языка, распознавание речи, преобразование текста в речь и персонализированные рекомендации. Два наиболее заметных применения тензорных ядер — это DLSS (Deep Learning Super Sampling) и AI Denoiser для снижения шума.
640
TMU
?
Блоки наложения текстур (TMU) служат компонентами графического процессора, которые способны вращать, масштабировать и искажать двоичные изображения, а затем размещать их в виде текстур на любой плоскости заданной трехмерной модели. Этот процесс называется отображением текстур.
320
Производитель
TSMC
Размер процесса
12 nm
Архитектура
Volta

Характеристики памяти

Объем памяти
32GB
Тип памяти
HBM2
Шина памяти
?
Ширина шины памяти обозначает количество бит данных, которые видеопамять может передать за один такт. Чем больше ширина шины, тем больший объем данных может быть передан мгновенно, что делает ее одним из важнейших параметров видеопамяти. Пропускная способность памяти рассчитывается как: Пропускная способность памяти = Частота памяти x Ширина шины памяти / 8. Следовательно, если частоты памяти одинаковы, ширина шины памяти будет определять размер пропускной способности памяти.
4096bit
Частота памяти
876MHz
Пропускная способность
?
Пропускная способность памяти — это скорость передачи данных между графическим чипом и видеопамятью. Он измеряется в байтах в секунду, и формула для его расчета: пропускная способность памяти = рабочая частота × ширина шины памяти / 8 бит.
897.0 GB/s

Теоретическая производительность

Пиксельный филлрейт
?
Скорость заполнения пикселей — это количество пикселей, которые графический процессор (GPU) может визуализировать в секунду, измеряется в мегапикселях/с (миллион пикселей в секунду) или GPixels/s (миллиард пикселей в секунду). Это наиболее часто используемый показатель для оценки производительности обработки пикселей видеокарты.
195.8 GPixel/s
Текстурный филлрейт
?
Скорость заполнения текстуры — это количество элементов карты текстур (текселей), которые графический процессор может сопоставить с пикселями за одну секунду.
489.6 GTexel/s
FP16 (half)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности.
31.33 TFLOPS
FP64 (double)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности, а числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
7.834 TFLOPS
FP32 (float)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
15.357 TFLOPS

Другое

Потоковый мультипроцессор (SM)
?
Несколько потоковых процессоров (SP) вместе с другими ресурсами образуют потоковый мультипроцессор (SM), который также называется основным ядром графического процессора. Эти дополнительные ресурсы включают в себя такие компоненты, как планировщики деформации, регистры и общую память. SM можно считать сердцем графического процессора, аналогично ядру ЦП, при этом регистры и общая память являются дефицитными ресурсами внутри SM.
80
Блоки шейдинга
?
Самым фундаментальным процессором является потоковый процессор (SP), в котором выполняются определенные инструкции и задачи. Графические процессоры выполняют параллельные вычисления, что означает, что несколько процессоров SP работают одновременно для обработки задач.
5120
Кэш L1
128 KB (per SM)
Кэш L2
6MB
TDP
250W
Версия Vulkan
?
Vulkan — это кроссплатформенный графический и вычислительный API от Khronos Group, предлагающий высокую производительность и низкую нагрузку на процессор. Он позволяет разработчикам напрямую управлять графическим процессором, снижает затраты на рендеринг и поддерживает многопоточные и многоядерные процессоры.
1.3
Версия OpenCL
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
7.0
Разъемы питания
None
Шейдерная модель
6.6
ROP
?
Конвейер растровых операций (ROP) в первую очередь отвечает за расчеты освещения и отражений в играх, а также за управление такими эффектами, как сглаживание (AA), высокое разрешение, дым и огонь. Чем более требовательны к сглаживанию и световым эффектам в игре, тем выше требования к производительности для ROP; в противном случае это может привести к резкому падению частоты кадров.
128
Требуемый блок питания
600W

Бенчмарки

FP32 (float)
15.357 TFLOPS

По сравнению с другими GPU

FP32 (float) / TFLOPS
14.596 -5%
13.994 -8.9%