NVIDIA GeForce RTX 3050 Mobile vs NVIDIA GeForce RTX 2050 Mobile
Résultat de la comparaison des GPU
Vous trouverez ci-dessous les résultats d'une comparaison de NVIDIA GeForce RTX 3050 Mobile et NVIDIA GeForce RTX 2050 Mobile cartes vidéo basées sur des caractéristiques de performances clés, ainsi que sur la consommation d'énergie et bien plus encore.
Avantages
- Plus haut Bande Passante: 192.0 GB/s (192.0 GB/s vs 112.0 GB/s)
- Plus haut Horloge Boost: 1477MHz (1057MHz vs 1477MHz)
- Plus récent Date de lancement: December 2021 (May 2021 vs December 2021)
Basique
NVIDIA
Nom de l'étiquette
NVIDIA
May 2021
Date de lancement
December 2021
Mobile
Plate-forme
Mobile
GeForce RTX 3050 Mobile
Nom du modèle
GeForce RTX 2050 Mobile
GeForce 30 Mobile
Génération
GeForce 20 Mobile
712MHz
Horloge de base
1185MHz
1057MHz
Horloge Boost
1477MHz
PCIe 4.0 x8
Interface de bus
PCIe 3.0 x8
Unknown
Transistors
Unknown
16
Cœurs RT
32
64
Cœurs de Tensor
?
Les Tensor Cores sont des unités de traitement spécialisées conçues spécifiquement pour l'apprentissage en profondeur, offrant des performances supérieures en matière d'entraînement et d'inférence par rapport à l'entraînement FP32. Ils permettent des calculs rapides dans des domaines tels que la vision par ordinateur, le traitement du langage naturel, la reconnaissance vocale, la conversion texte-parole et les recommandations personnalisées. Les deux applications les plus remarquables des Tensor Cores sont DLSS (Deep Learning Super Sampling) et AI Denoiser pour la réduction du bruit.
64
64
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
64
Samsung
Fonderie
Samsung
8 nm
Taille de processus
8 nm
Ampere
Architecture
Ampere
Spécifications de la mémoire
4GB
Taille de Mémoire
4GB
GDDR6
Type de Mémoire
GDDR6
128bit
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
64bit
1500MHz
Horloge Mémoire
1750MHz
192.0 GB/s
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
112.0 GB/s
Performance théorique
33.82 GPixel/s
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
47.26 GPixel/s
67.65 GTexel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
94.53 GTexel/s
4.329 TFLOPS
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
12.10 TFLOPS
67.65 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
189.1 GFLOPS
4.242
TFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
5.929
TFLOPS
Divers
16
Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
16
2048
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
2048
128 KB (per SM)
Cache L1
64 KB (per SM)
2MB
Cache L2
2MB
75W
TDP
45W
1.3
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
3.0
Version OpenCL
3.0
4.6
OpenGL
4.6
8.6
CUDA
8.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
None
Connecteurs d'alimentation
1x 6-pin
6.6
Modèle de shader
6.6
32
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
32
Benchmarks
FP32 (flottant)
/ TFLOPS
GeForce RTX 3050 Mobile
4.242
GeForce RTX 2050 Mobile
5.929
+40%
3DMark Time Spy
GeForce RTX 3050 Mobile
4775
+39%
GeForce RTX 2050 Mobile
3430
Blender
GeForce RTX 3050 Mobile
1314
+65%
GeForce RTX 2050 Mobile
795
OctaneBench
GeForce RTX 3050 Mobile
145
+130%
GeForce RTX 2050 Mobile
63