AMD Radeon RX 6800M vs AMD Radeon RX 7900 GRE
Résultat de la comparaison des GPU
Vous trouverez ci-dessous les résultats d'une comparaison de AMD Radeon RX 6800M et AMD Radeon RX 7900 GRE cartes vidéo basées sur des caractéristiques de performances clés, ainsi que sur la consommation d'énergie et bien plus encore.
Avantages
- Plus haut Horloge Boost: 2390MHz (2390MHz vs 2245MHz)
- Plus grand Taille de Mémoire: 16GB (12GB vs 16GB)
- Plus haut Bande Passante: 576.0 GB/s (384.0 GB/s vs 576.0 GB/s)
- Plus Unités d'Ombrage: 5120 (2560 vs 5120)
- Plus récent Date de lancement: July 2023 (May 2021 vs July 2023)
Basique
AMD
Nom de l'étiquette
AMD
May 2021
Date de lancement
July 2023
Mobile
Plate-forme
Desktop
Radeon RX 6800M
Nom du modèle
Radeon RX 7900 GRE
Mobility Radeon
Génération
Navi III
2116MHz
Horloge de base
1287MHz
2390MHz
Horloge Boost
2245MHz
PCIe 4.0 x16
Interface de bus
PCIe 4.0 x16
17,200 million
Transistors
57,700 million
40
Cœurs RT
80
40
Unités de calcul
80
160
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
320
TSMC
Fonderie
TSMC
7 nm
Taille de processus
5 nm
RDNA 2.0
Architecture
RDNA 3.0
Spécifications de la mémoire
12GB
Taille de Mémoire
16GB
GDDR6
Type de Mémoire
GDDR6
192bit
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
2000MHz
Horloge Mémoire
2250MHz
384.0 GB/s
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
576.0 GB/s
Performance théorique
153.0 GPixel/s
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
431.0 GPixel/s
382.4 GTexel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
718.4 GTexel/s
24.47 TFLOPS
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
91.96 TFLOPS
764.8 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
1437 GFLOPS
12.485
TFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
46.9
TFLOPS
Divers
2560
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
5120
128 KB per Array
Cache L1
256 KB per Array
3MB
Cache L2
6MB
145W
TDP
260W
1.3
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
2.1
Version OpenCL
2.2
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
None
Connecteurs d'alimentation
2x 8-pin
64
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
192
6.5
Modèle de shader
6.7
-
Alimentation suggérée
600W
Benchmarks
FP32 (flottant)
/ TFLOPS
Radeon RX 6800M
12.485
Radeon RX 7900 GRE
46.9
+276%
Vulkan
Radeon RX 6800M
97530
Radeon RX 7900 GRE
141871
+45%
OpenCL
Radeon RX 6800M
87271
Radeon RX 7900 GRE
159982
+83%