AMD Radeon RX 6750 GRE 12 GB vs NVIDIA GeForce RTX 3070 Ti

Résultat de la comparaison des GPU

Vous trouverez ci-dessous les résultats d'une comparaison de AMD Radeon RX 6750 GRE 12 GB et NVIDIA GeForce RTX 3070 Ti cartes vidéo basées sur des caractéristiques de performances clés, ainsi que sur la consommation d'énergie et bien plus encore.

Avantages

  • Plus haut Horloge Boost: 2581MHz (2581MHz vs 1770MHz)
  • Plus grand Taille de Mémoire: 12GB (12GB vs 8GB)
  • Plus récent Date de lancement: October 2023 (October 2023 vs May 2021)
  • Plus haut Bande Passante: 608.3 GB/s (432.0 GB/s vs 608.3 GB/s)
  • Plus Unités d'Ombrage: 6144 (2560 vs 6144)

Basique

AMD
Nom de l'étiquette
NVIDIA
October 2023
Date de lancement
May 2021
Desktop
Plate-forme
Desktop
Radeon RX 6750 GRE 12 GB
Nom du modèle
GeForce RTX 3070 Ti
Navi II
Génération
GeForce 30
2321MHz
Horloge de base
1575MHz
2581MHz
Horloge Boost
1770MHz
PCIe 4.0 x16
Interface de bus
PCIe 4.0 x16
17,200 million
Transistors
17,400 million
40
Cœurs RT
48
40
Unités de calcul
-
-
Cœurs de Tensor
?
Les Tensor Cores sont des unités de traitement spécialisées conçues spécifiquement pour l'apprentissage en profondeur, offrant des performances supérieures en matière d'entraînement et d'inférence par rapport à l'entraînement FP32. Ils permettent des calculs rapides dans des domaines tels que la vision par ordinateur, le traitement du langage naturel, la reconnaissance vocale, la conversion texte-parole et les recommandations personnalisées. Les deux applications les plus remarquables des Tensor Cores sont DLSS (Deep Learning Super Sampling) et AI Denoiser pour la réduction du bruit.
192
160
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
192
TSMC
Fonderie
Samsung
7 nm
Taille de processus
8 nm
RDNA 2.0
Architecture
Ampere

Spécifications de la mémoire

12GB
Taille de Mémoire
8GB
GDDR6
Type de Mémoire
GDDR6X
192bit
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
2250MHz
Horloge Mémoire
1188MHz
432.0 GB/s
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
608.3 GB/s

Performance théorique

165.2 GPixel/s
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
169.9 GPixel/s
413.0 GTexel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
339.8 GTexel/s
26.43 TFLOPS
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
21.75 TFLOPS
825.9 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
339.8 GFLOPS

Divers

-
Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
48
2560
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
6144
128 KB per Array
Cache L1
128 KB (per SM)
3MB
Cache L2
4MB
250W
TDP
290W
1.3
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
2.1
Version OpenCL
3.0
4.6
OpenGL
4.6
-
CUDA
8.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
1x 6-pin + 1x 8-pin
Connecteurs d'alimentation
1x 12-pin
64
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
96
6.7
Modèle de shader
6.6
600W
Alimentation suggérée
600W

Benchmarks

3DMark Time Spy
Radeon RX 6750 GRE 12 GB
12879
GeForce RTX 3070 Ti
15163 +18%
Blender
Radeon RX 6750 GRE 12 GB
1592
GeForce RTX 3070 Ti
3510.95 +121%