AMD Radeon RX 6700M vs AMD Radeon 660M

Résultat de la comparaison des GPU

Vous trouverez ci-dessous les résultats d'une comparaison de AMD Radeon RX 6700M et AMD Radeon 660M cartes vidéo basées sur des caractéristiques de performances clés, ainsi que sur la consommation d'énergie et bien plus encore.

Avantages

  • Plus haut Horloge Boost: 2400MHz (2400MHz vs 1900MHz)
  • Plus grand Taille de Mémoire: 10GB (10GB vs System Shared)
  • Plus haut Bande Passante: 320.0 GB/s (320.0 GB/s vs System Dependent)
  • Plus Unités d'Ombrage: 2304 (2304 vs 384)
  • Plus récent Date de lancement: January 2022 (May 2021 vs January 2022)

Basique

AMD
Nom de l'étiquette
AMD
May 2021
Date de lancement
January 2022
Mobile
Plate-forme
Integrated
Radeon RX 6700M
Nom du modèle
Radeon 660M
Mobility Radeon
Génération
Rembrandt
1489MHz
Horloge de base
1500MHz
2400MHz
Horloge Boost
1900MHz
PCIe 4.0 x16
Interface de bus
PCIe 4.0 x8
17,200 million
Transistors
13,100 million
36
Cœurs RT
6
36
Unités de calcul
6
144
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
24
TSMC
Fonderie
TSMC
7 nm
Taille de processus
6 nm
RDNA 2.0
Architecture
RDNA 2.0

Spécifications de la mémoire

10GB
Taille de Mémoire
System Shared
GDDR6
Type de Mémoire
System Shared
160bit
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
System Shared
2000MHz
Horloge Mémoire
SystemShared
320.0 GB/s
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
System Dependent

Performance théorique

153.6 GPixel/s
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
30.40 GPixel/s
345.6 GTexel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
45.60 GTexel/s
22.12 TFLOPS
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
2.918 TFLOPS
691.2 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
91.20 GFLOPS
11.281 TFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
1.43 TFLOPS

Divers

2304
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
384
128 KB per Array
Cache L1
128 KB per Array
3MB
Cache L2
2MB
135W
TDP
15W
1.3
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.2
2.1
Version OpenCL
2.0
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
None
Connecteurs d'alimentation
None
6.5
Modèle de shader
6.5
64
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
16

Benchmarks

FP32 (flottant) / TFLOPS
Radeon RX 6700M
11.281 +689%
Radeon 660M
1.43
3DMark Time Spy
Radeon RX 6700M
9718 +537%
Radeon 660M
1526
Blender
Radeon RX 6700M
1222 +1228%
Radeon 660M
92