AMD Radeon RX 6600 XT vs NVIDIA GeForce RTX 3070 Mobile
Résultat de la comparaison des GPU
Vous trouverez ci-dessous les résultats d'une comparaison de AMD Radeon RX 6600 XT et NVIDIA GeForce RTX 3070 Mobile cartes vidéo basées sur des caractéristiques de performances clés, ainsi que sur la consommation d'énergie et bien plus encore.
Avantages
- Plus haut Horloge Boost: 2589MHz (2589MHz vs 1560MHz)
- Plus récent Date de lancement: July 2021 (July 2021 vs January 2021)
- Plus haut Bande Passante: 448.0 GB/s (256.0 GB/s vs 448.0 GB/s)
- Plus Unités d'Ombrage: 5120 (2048 vs 5120)
Basique
AMD
Nom de l'étiquette
NVIDIA
July 2021
Date de lancement
January 2021
Desktop
Plate-forme
Mobile
Radeon RX 6600 XT
Nom du modèle
GeForce RTX 3070 Mobile
Navi II
Génération
GeForce 30 Mobile
1968MHz
Horloge de base
1110MHz
2589MHz
Horloge Boost
1560MHz
PCIe 4.0 x8
Interface de bus
PCIe 4.0 x16
11,060 million
Transistors
17,400 million
32
Cœurs RT
40
32
Unités de calcul
-
-
Cœurs de Tensor
?
Les Tensor Cores sont des unités de traitement spécialisées conçues spécifiquement pour l'apprentissage en profondeur, offrant des performances supérieures en matière d'entraînement et d'inférence par rapport à l'entraînement FP32. Ils permettent des calculs rapides dans des domaines tels que la vision par ordinateur, le traitement du langage naturel, la reconnaissance vocale, la conversion texte-parole et les recommandations personnalisées. Les deux applications les plus remarquables des Tensor Cores sont DLSS (Deep Learning Super Sampling) et AI Denoiser pour la réduction du bruit.
160
128
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
160
TSMC
Fonderie
Samsung
7 nm
Taille de processus
8 nm
RDNA 2.0
Architecture
Ampere
Spécifications de la mémoire
8GB
Taille de Mémoire
8GB
GDDR6
Type de Mémoire
GDDR6
128bit
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
256bit
2000MHz
Horloge Mémoire
1750MHz
256.0 GB/s
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
448.0 GB/s
Performance théorique
165.7 GPixel/s
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
124.8 GPixel/s
331.4 GTexel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
249.6 GTexel/s
21.21 TFLOPS
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
15.97 TFLOPS
662.8 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
249.6 GFLOPS
10.812
TFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
15.651
TFLOPS
Divers
-
Nombre de SM
?
Plusieurs processeurs de flux (SPs), ainsi que d'autres ressources, forment un multiprocesseur de flux (SM), également appelé cœur principal du GPU. Ces ressources supplémentaires comprennent des composants tels que des ordonnanceurs de warp, des registres et de la mémoire partagée. Le SM peut être considéré comme le cœur du GPU, similaire à un cœur de CPU, les registres et la mémoire partagée étant des ressources limitées au sein du SM.
40
2048
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
5120
128 KB per Array
Cache L1
128 KB (per SM)
2MB
Cache L2
4MB
160W
TDP
115W
1.3
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
2.1
Version OpenCL
3.0
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
-
CUDA
8.6
1x 8-pin
Connecteurs d'alimentation
None
64
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
80
6.7
Modèle de shader
6.6
450W
Alimentation suggérée
-
Benchmarks
Shadow of the Tomb Raider 2160p
/ fps
Radeon RX 6600 XT
39
GeForce RTX 3070 Mobile
43
+10%
Shadow of the Tomb Raider 1440p
/ fps
Radeon RX 6600 XT
73
GeForce RTX 3070 Mobile
78
+7%
Shadow of the Tomb Raider 1080p
/ fps
Radeon RX 6600 XT
121
+14%
GeForce RTX 3070 Mobile
106
Battlefield 5 2160p
/ fps
Radeon RX 6600 XT
59
+5%
GeForce RTX 3070 Mobile
56
Battlefield 5 1440p
/ fps
Radeon RX 6600 XT
109
+10%
GeForce RTX 3070 Mobile
99
Battlefield 5 1080p
/ fps
Radeon RX 6600 XT
141
+9%
GeForce RTX 3070 Mobile
129
GTA 5 2160p
/ fps
Radeon RX 6600 XT
62
GeForce RTX 3070 Mobile
86
+39%
GTA 5 1440p
/ fps
Radeon RX 6600 XT
80
GeForce RTX 3070 Mobile
82
+3%
GTA 5 1080p
/ fps
Radeon RX 6600 XT
146
GeForce RTX 3070 Mobile
153
+5%
FP32 (flottant)
/ TFLOPS
Radeon RX 6600 XT
10.812
GeForce RTX 3070 Mobile
15.651
+45%
3DMark Time Spy
Radeon RX 6600 XT
9840
GeForce RTX 3070 Mobile
10649
+8%
Blender
Radeon RX 6600 XT
1128
GeForce RTX 3070 Mobile
3109
+176%