AMD Radeon RX 6300M vs AMD Radeon PRO W7500
Résultat de la comparaison des GPU
Vous trouverez ci-dessous les résultats d'une comparaison de AMD Radeon RX 6300M et AMD Radeon PRO W7500 cartes vidéo basées sur des caractéristiques de performances clés, ainsi que sur la consommation d'énergie et bien plus encore.
Avantages
- Plus haut Horloge Boost: 2400MHz (2400MHz vs 1700MHz)
- Plus grand Taille de Mémoire: 8GB (2GB vs 8GB)
- Plus haut Bande Passante: 172.0 GB/s (72.00 GB/s vs 172.0 GB/s)
- Plus Unités d'Ombrage: 1792 (768 vs 1792)
- Plus récent Date de lancement: August 2023 (January 2022 vs August 2023)
Basique
AMD
Nom de l'étiquette
AMD
January 2022
Date de lancement
August 2023
Mobile
Plate-forme
Desktop
Radeon RX 6300M
Nom du modèle
Radeon PRO W7500
Mobility Radeon
Génération
Radeon Pro Navi
2000MHz
Horloge de base
1500MHz
2400MHz
Horloge Boost
1700MHz
PCIe 4.0 x4
Interface de bus
PCIe 4.0 x8
5,400 million
Transistors
13,300 million
12
Cœurs RT
28
12
Unités de calcul
28
48
TMUs
?
Les unités de mappage de texture (TMUs) sont des composants du GPU qui sont capables de faire pivoter, mettre à l'échelle et déformer des images binaires, puis de les placer en tant que textures sur n'importe quel plan d'un modèle 3D donné. Ce processus est appelé mappage de texture.
112
TSMC
Fonderie
TSMC
6 nm
Taille de processus
6 nm
RDNA 2.0
Architecture
RDNA 3.0
Spécifications de la mémoire
2GB
Taille de Mémoire
8GB
GDDR6
Type de Mémoire
GDDR6
32bit
Bus de Mémoire
?
La largeur du bus mémoire fait référence au nombre de bits de données que la mémoire vidéo peut transférer lors d'un seul cycle d'horloge. Plus la largeur du bus est grande, plus la quantité de données qui peut être transmise instantanément est importante, ce qui en fait l'un des paramètres cruciaux de la mémoire vidéo. La bande passante mémoire est calculée comme suit : Bande passante mémoire = Fréquence mémoire x Largeur du bus mémoire / 8. Par conséquent, lorsque les fréquences mémoire sont similaires, la largeur du bus mémoire déterminera la taille de la bande passante mémoire.
128bit
2250MHz
Horloge Mémoire
1344MHz
72.00 GB/s
Bande Passante
?
La bande passante mémoire fait référence au débit de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde, et la formule pour la calculer est : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits. En français: La bande passante mémoire désigne le taux de transfert de données entre la puce graphique et la mémoire vidéo. Elle est mesurée en octets par seconde et la formule pour la calculer est la suivante : bande passante mémoire = fréquence de fonctionnement × largeur du bus mémoire / 8 bits.
172.0 GB/s
Performance théorique
76.80 GPixel/s
Taux de Pixel
?
Le taux de remplissage des pixels désigne le nombre de pixels qu'une unité de traitement graphique (GPU) peut rendre par seconde, mesuré en MPixels/s (million de pixels par seconde) ou en GPixels/s (milliard de pixels par seconde). C'est la mesure la plus couramment utilisée pour évaluer les performances de traitement des pixels d'une carte graphique.
108.8 GPixel/s
115.2 GTexel/s
Taux de Texture
?
Le taux de remplissage de texture fait référence au nombre d'éléments de texture (texels) qu'un GPU peut mapper sur des pixels en une seule seconde.
190.4 GTexel/s
7.373 TFLOPS
FP16 (demi)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
24.37 TFLOPS
230.4 GFLOPS
FP64 (double précision)
?
Une mesure importante pour évaluer les performances des GPU est la capacité de calcul en virgule flottante. Les nombres en virgule flottante à demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable. Les nombres en virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de multimédia et de traitement graphique, tandis que les nombres en virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui nécessite une large plage numérique et une grande précision.
380.8 GFLOPS
3.612
TFLOPS
FP32 (flottant)
?
Une mesure importante pour mesurer les performances du GPU est la capacité de calcul en virgule flottante. Les nombres à virgule flottante simple précision (32 bits) sont utilisés pour les tâches courantes de traitement multimédia et graphique, tandis que les nombres à virgule flottante double précision (64 bits) sont requis pour le calcul scientifique qui exige une large plage numérique et une grande précision. Les nombres à virgule flottante demi-précision (16 bits) sont utilisés pour des applications telles que l'apprentissage automatique, où une précision inférieure est acceptable.
11.946
TFLOPS
Divers
768
Unités d'Ombrage
?
L'unité de traitement la plus fondamentale est le processeur en continu (SP), où des instructions et des tâches spécifiques sont exécutées. Les GPU effectuent des calculs parallèles, ce qui signifie que plusieurs SP fonctionnent simultanément pour traiter les tâches.
1792
128 KB per Array
Cache L1
128 KB per Array
1024KB
Cache L2
2MB
35W
TDP
70W
1.3
Version Vulkan
?
Vulkan est une API graphique et de calcul multiplateforme du groupe Khronos, offrant des performances élevées et une faible surcharge du processeur. Il permet aux développeurs de contrôler directement le GPU, réduit les frais de rendu et prend en charge les processeurs multithread et multicœurs.
1.3
2.2
Version OpenCL
2.2
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
None
Connecteurs d'alimentation
None
32
ROPs
?
Le pipeline des opérations de rasterisation (ROPs) est principalement responsable de la gestion des calculs d'éclairage et de réflexion dans les jeux, ainsi que de la gestion d'effets tels que l'anti-aliasing (AA), la haute résolution, la fumée et le feu. Plus les effets d'anti-aliasing et d'éclairage sont exigeants dans un jeu, plus les exigences de performances pour les ROPs sont élevées ; sinon, cela peut entraîner une chute importante du taux de rafraîchissement.
64
6.6
Modèle de shader
6.7
-
Alimentation suggérée
250W
Benchmarks
FP32 (flottant)
/ TFLOPS
Radeon RX 6300M
3.612
Radeon PRO W7500
11.946
+231%