NVIDIA GeForce RTX 4090 Max-Q
Acerca del GPU
La GPU NVIDIA GeForce RTX 4090 Max-Q es una potencia en el mercado de GPU móviles. Con sus impresionantes especificaciones y tecnología innovadora, esta GPU marca un antes y un después para cualquier persona que necesite un procesamiento gráfico de alto rendimiento sobre la marcha.
El RTX 4090 Max-Q cuenta con una velocidad de reloj base de 930MHz y una velocidad de reloj de impulso de 1455MHz, lo que proporciona una velocidad y eficiencia excepcionales. Además, sus 16 GB de memoria GDDR6 y una velocidad de memoria de 1750MHz garantizan experiencias de multitarea y juegos suaves y sin problemas. Las 9728 unidades de sombreado y 64 MB de caché L2 contribuyen aún más a sus destacadas capacidades de rendimiento.
Una de las características más notables del RTX 4090 Max-Q es su bajo TDP de 80W, que permite una experiencia más eficiente en términos de energía y térmicamente optimizada, perfecta para computadoras portátiles y otros dispositivos portátiles. A pesar de este bajo consumo de energía, la GPU aún logra ofrecer un rendimiento teórico de 28.31 TFLOPS, lo que la convierte en una de las GPU móviles más potentes del mercado.
Ya sea que seas un creador de contenido profesional, un jugador hardcore o alguien que necesite gráficos de alto rendimiento para el trabajo o el entretenimiento, la GPU NVIDIA GeForce RTX 4090 Max-Q es una elección de primera clase que ofrece un rendimiento y eficiencia incomparables en un paquete elegante y portátil. Esta GPU establece un nuevo estándar para el procesamiento gráfico móvil y seguramente impresionará incluso a los usuarios más exigentes.
Básico
Nombre de Etiqueta
NVIDIA
Plataforma
Mobile
Fecha de Lanzamiento
January 2023
Nombre del modelo
GeForce RTX 4090 Max-Q
Generación
GeForce 40 Mobile
Reloj base
930MHz
Reloj de impulso
1455MHz
Interfaz de bus
PCIe 4.0 x16
Transistores
45,900 million
Núcleos RT
76
Núcleos tensor
?
Los Tensor Cores son unidades de procesamiento especializadas diseñadas específicamente para el aprendizaje profundo, proporcionando un rendimiento de entrenamiento e inferencia más alto en comparación con el entrenamiento FP32. Permiten cálculos rápidos en áreas como la visión por computadora, el procesamiento del lenguaje natural, el reconocimiento de voz, la conversión de texto a voz y las recomendaciones personalizadas. Las dos aplicaciones más destacadas de los Tensor Cores son DLSS (Deep Learning Super Sampling) y AI Denoiser para la reducción de ruido.
304
TMUs
?
Las unidades de mapeo de texturas (TMUs) funcionan como componentes de la GPU, capaces de rotar, escalar y distorsionar imágenes binarias, para luego colocarlas como texturas sobre cualquier plano de un modelo 3D dado. Este proceso se llama mapeo de texturas.
304
Fundición
TSMC
Tamaño proceso
4 nm
Arquitectura
Ada Lovelace
Especificaciones de Memoria
Tamaño de memoria
16GB
Tipo de memoria
GDDR6
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
256bit
Reloj de memoria
1750MHz
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
448.0 GB/s
Rendimiento teórico
Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
163.0 GPixel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
442.3 GTexel/s
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
28.31 TFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
442.3 GFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
28.876
TFLOPS
Misceláneos
Cuenta de SM
?
Múltiples Procesadores de Transmisión (SP), junto con otros recursos, forman un Multiprocesador de Transmisión (SM), que también se conoce como el núcleo principal de una GPU. Estos recursos adicionales incluyen componentes como planificadores de bloques, registros y memoria compartida. El SM puede considerarse como el corazón de la GPU, similar a un núcleo de CPU, donde los registros y la memoria compartida son recursos escasos dentro del SM.
76
Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
9728
Caché L1
128 KB (per SM)
Caché L2
64MB
TDP
80W
Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.3
OpenCL Versión
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.9
Conectores de alimentación
None
Modelo de sombreado
6.7
ROPs
?
La tubería de operaciones raster (ROPs) es principalmente responsable de manejar los cálculos de iluminación y reflexión en los juegos, así como de administrar efectos como el anti-aliasing (AA), alta resolución, humo y fuego. Cuanto más exigentes sean el anti-aliasing y los efectos de iluminación en un juego, mayores serán los requisitos de rendimiento para los ROPs; de lo contrario, puede resultar en una caída brusca en la velocidad de fotogramas.
112
Clasificaciones
FP32 (flotante)
Puntaje
28.876
TFLOPS
Comparado con Otras GPU
FP32 (flotante)
/ TFLOPS