NVIDIA RTX 6000 Ada Generation vs NVIDIA GeForce RTX 4070

Resultado de la comparación de GPU

A continuación se muestran los resultados de una comparación de NVIDIA RTX 6000 Ada Generation y GPU de NVIDIA GeForce RTX 4070 según las características clave de rendimiento, así como el consumo de energía y mucho más.

Ventajas

  • Mas alto Reloj de impulso: 2505MHz (2505MHz vs 2475MHz)
  • Más grande Tamaño de memoria: 48GB (48GB vs 12GB)
  • Mas alto Ancho de banda: 960.0 GB/s (960.0 GB/s vs 504.2 GB/s)
  • Más Unidades de sombreado: 18176 (18176 vs 5888)
  • Más nuevo Fecha de Lanzamiento: April 2023 (December 2022 vs April 2023)

Básico

NVIDIA
Nombre de Etiqueta
NVIDIA
December 2022
Fecha de Lanzamiento
April 2023
Desktop
Plataforma
Desktop
RTX 6000 Ada Generation
Nombre del modelo
GeForce RTX 4070
Quadro Ada
Generación
GeForce 40
915MHz
Reloj base
1920MHz
2505MHz
Reloj de impulso
2475MHz
PCIe 4.0 x16
Interfaz de bus
PCIe 4.0 x16
76,300 million
Transistores
35,800 million
142
Núcleos RT
46
568
Núcleos tensor
?
Los Tensor Cores son unidades de procesamiento especializadas diseñadas específicamente para el aprendizaje profundo, proporcionando un rendimiento de entrenamiento e inferencia más alto en comparación con el entrenamiento FP32. Permiten cálculos rápidos en áreas como la visión por computadora, el procesamiento del lenguaje natural, el reconocimiento de voz, la conversión de texto a voz y las recomendaciones personalizadas. Las dos aplicaciones más destacadas de los Tensor Cores son DLSS (Deep Learning Super Sampling) y AI Denoiser para la reducción de ruido.
184
568
TMUs
?
Las unidades de mapeo de texturas (TMUs) funcionan como componentes de la GPU, capaces de rotar, escalar y distorsionar imágenes binarias, para luego colocarlas como texturas sobre cualquier plano de un modelo 3D dado. Este proceso se llama mapeo de texturas.
184
TSMC
Fundición
TSMC
4 nm
Tamaño proceso
5 nm
Ada Lovelace
Arquitectura
Ada Lovelace

Especificaciones de Memoria

48GB
Tamaño de memoria
12GB
GDDR6
Tipo de memoria
GDDR6X
384bit
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
192bit
2500MHz
Reloj de memoria
1313MHz
960.0 GB/s
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
504.2 GB/s

Rendimiento teórico

481.0 GPixel/s
Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
158.4 GPixel/s
1423 GTexel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
455.4 GTexel/s
91.06 TFLOPS
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
29.15 TFLOPS
1423 GFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
455.4 GFLOPS
89.239 TFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
29.733 TFLOPS

Misceláneos

142
Cuenta de SM
?
Múltiples Procesadores de Transmisión (SP), junto con otros recursos, forman un Multiprocesador de Transmisión (SM), que también se conoce como el núcleo principal de una GPU. Estos recursos adicionales incluyen componentes como planificadores de bloques, registros y memoria compartida. El SM puede considerarse como el corazón de la GPU, similar a un núcleo de CPU, donde los registros y la memoria compartida son recursos escasos dentro del SM.
46
18176
Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
5888
128 KB (per SM)
Caché L1
128 KB (per SM)
96MB
Caché L2
36MB
300W
TDP
200W
1.3
Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.3
3.0
OpenCL Versión
3.0
4.6
OpenGL
4.6
8.9
CUDA
8.9
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
1x 16-pin
Conectores de alimentación
1x 16-pin
6.7
Modelo de sombreado
6.7
192
ROPs
?
La tubería de operaciones raster (ROPs) es principalmente responsable de manejar los cálculos de iluminación y reflexión en los juegos, así como de administrar efectos como el anti-aliasing (AA), alta resolución, humo y fuego. Cuanto más exigentes sean el anti-aliasing y los efectos de iluminación en un juego, mayores serán los requisitos de rendimiento para los ROPs; de lo contrario, puede resultar en una caída brusca en la velocidad de fotogramas.
64
700W
PSU sugerida
550W

Clasificaciones

FP32 (flotante) / TFLOPS
RTX 6000 Ada Generation
89.239 +200%
GeForce RTX 4070
29.733
3DMark Time Spy
RTX 6000 Ada Generation
10122
GeForce RTX 4070
17481 +73%
Blender
RTX 6000 Ada Generation
11924 +94%
GeForce RTX 4070
6138
OctaneBench
RTX 6000 Ada Generation
1114 +78%
GeForce RTX 4070
627
Vulkan
RTX 6000 Ada Generation
249714 +65%
GeForce RTX 4070
151403
OpenCL
RTX 6000 Ada Generation
274348 +63%
GeForce RTX 4070
168239