AMD Radeon RX Vega 11 Mobile

AMD Radeon RX Vega 11 Mobile

About GPU

The AMD Radeon RX Vega 11 Mobile GPU is a decent integrated graphics option for laptops, offering good performance for its intended purpose. With a base clock of 300MHz and a boost clock of 1400MHz, it provides a smooth experience for light gaming and everyday tasks. One of the key features of this GPU is the system shared memory, which allows it to dynamically allocate memory as needed, resulting in efficient and flexible usage. The 704 shading units and a TDP of 15W further contribute to its power efficiency, making it suitable for portable devices without sacrificing performance. In terms of actual performance, the RX Vega 11 Mobile GPU has a theoretical performance of 1.971 TFLOPS and scored 1198 in 3DMark Time Spy benchmark. These numbers indicate that the GPU is capable of handling modern games at lower settings and resolutions, as well as content creation tasks such as photo and video editing. Overall, the AMD Radeon RX Vega 11 Mobile GPU is a solid choice for budget-friendly laptops or ultrabooks where dedicated graphics are not feasible. It provides a good balance of power efficiency and performance, making it suitable for casual gamers and professionals who need a reliable integrated graphics solution. While it may not be able to handle high-end gaming or intensive workloads, it offers excellent value for its intended use case.

Basic

Label Name
AMD
Platform
Integrated
Launch Date
October 2019
Model Name
Radeon RX Vega 11 Mobile
Generation
Picasso
Base Clock
300MHz
Boost Clock
1400MHz
Bus Interface
IGP
Transistors
4,940 million
Compute Units
11
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
44
Foundry
GlobalFoundries
Process Size
14 nm
Architecture
GCN 5.0

Memory Specifications

Memory Size
System Shared
Memory Type
System Shared
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
System Shared
Memory Clock
SystemShared
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
System Dependent

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
11.20 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
61.60 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
3.942 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
123.2 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
2.01 TFLOPS

Miscellaneous

Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
704
TDP
15W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 (12_1)
Shader Model
6.4
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
8

Benchmarks

FP32 (float)
Score
2.01 TFLOPS
3DMark Time Spy
Score
1222

Compared to Other GPU

FP32 (float) / TFLOPS
2.148 +6.9%
2.064 +2.7%
1.976 -1.7%
1.932 -3.9%
3DMark Time Spy
5182 +324.1%
3906 +219.6%
2755 +125.5%
1769 +44.8%