AMD Radeon Pro W6300M

AMD Radeon Pro W6300M

About GPU

The AMD Radeon Pro W6300M is a solid GPU for mobile workstations, offering a good balance of performance and power efficiency. With a base clock of 1512MHz and a boost clock of 2040MHz, it provides enough processing power to handle graphics-intensive tasks with ease. The 2GB of GDDR6 memory and a memory clock of 2000MHz ensure smooth performance when working with large datasets and complex 3D models. The 768 shading units and 1024KB of L2 cache enable the GPU to handle a wide range of professional applications, including 3D rendering, video editing, and computer-aided design. The low TDP of 25W means that it can deliver this level of performance without consuming an excessive amount of power, making it suitable for use in thin and light mobile workstations. With a theoretical performance of 3.133 TFLOPS, the AMD Radeon Pro W6300M is a capable GPU for professionals who need reliable graphics performance on the go. Whether you're working on intensive creative projects or running complex simulations, this GPU has the power to handle the task efficiently. Overall, the AMD Radeon Pro W6300M is a strong choice for anyone in need of a mobile GPU with a good balance of performance, power efficiency, and reliability. Its combination of features makes it well-suited for a wide range of professional applications, and it is sure to impress users with its capabilities.

Basic

Label Name
AMD
Platform
Mobile
Launch Date
January 2022
Model Name
Radeon Pro W6300M
Generation
Radeon Pro Mobile
Base Clock
1512MHz
Boost Clock
2040MHz
Bus Interface
PCIe 4.0 x4
Transistors
5,400 million
RT Cores
12
Compute Units
12
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
48
Foundry
TSMC
Process Size
6 nm
Architecture
RDNA 2.0

Memory Specifications

Memory Size
2GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
32bit
Memory Clock
2000MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
64.00 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
65.28 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
97.92 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
6.267 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
195.8 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
3.196 TFLOPS

Miscellaneous

Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
768
L1 Cache
128 KB per Array
L2 Cache
1024KB
TDP
25W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
2.2
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Power Connectors
None
Shader Model
6.7
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32

Benchmarks

FP32 (float)
Score
3.196 TFLOPS

Compared to Other GPU

FP32 (float) / TFLOPS
3.363 +5.2%
3.311 +3.6%
3.055 -4.4%