NVIDIA TITAN Ada

NVIDIA TITAN Ada

Über GPU

Die NVIDIA TITAN Ada GPU ist eine unglaublich leistungsstarke und fortschrittliche Grafikprozessoreinheit, die für rechenintensive Aufgaben im High-Performance-Computing konzipiert wurde. Mit einer Basisuhr von 2235MHz und einer Boost-Uhr von 2520MHz bietet diese GPU blitzschnelle Verarbeitungsgeschwindigkeiten, was sie ideal für anspruchsvolle Anwendungen wie künstliche Intelligenz, Datenanalyse und wissenschaftliche Simulationen macht. Eine der herausragenden Funktionen der TITAN Ada ist ihre massive 48GB Speichergröße, die von der GDDR6X-Speicherart betrieben wird und mit einer Taktrate von 1500MHz arbeitet. Diese umfangreiche Speicherkapazität ermöglicht nahtloses Multitasking und die Verarbeitung großer Datensätze, was sicherstellt, dass Benutzer mit komplexen und datenintensiven Arbeitslasten ohne Leistungsengpässe arbeiten können. Mit beeindruckenden 18432 Shading-Einheiten und 96MB L2-Cache ist die TITAN Ada GPU in der Lage, beispiellose Levels paralleler Verarbeitung und Rechenleistung zu liefern. Ihre hohe thermische Verlustleistung von 800W und theoretische Leistung von 92,9 TFLOPS unterstreichen ihre außergewöhnlichen Fähigkeiten und machen sie zur ersten Wahl für Fachleute, die anspruchsvolle Leistung benötigen. Zusammenfassend ist die NVIDIA TITAN Ada GPU ein Game-Changer in der Welt des High-Performance-Computing und bietet eine beispiellose Kombination aus Geschwindigkeit, Speicherkapazität und Rechenleistung. Ihre fortschrittlichen Spezifikationen machen sie zur ersten Wahl für Fachleute in Bereichen wie KI, Datenwissenschaft und Rechenforschung, wo anspruchsvolle Arbeitslasten eine GPU erfordern, die außergewöhnliche Leistung bietet.

Basic

Markenname
NVIDIA
Plattform
Desktop
Modellname
TITAN Ada
Generation
GeForce 40
Basis-Takt
2235MHz
Boost-Takt
2520MHz
Bus-Schnittstelle
PCIe 4.0 x16
Transistoren
76,300 million
RT-Kerne
144
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
576
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
576
Foundry
TSMC
Prozessgröße
5 nm
Architektur
Ada Lovelace

Speicherspezifikationen

Speichergröße
48GB
Speichertyp
GDDR6X
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
384bit
Speichertakt
1500MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
1152 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
483.8 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
1452 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
92.90 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
1452 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
91.042 TFLOPS

Verschiedenes

SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
144
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
18432
L1-Cache
128 KB (per SM)
L2-Cache
96MB
TDP (Thermal Design Power)
800W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.9
Stromanschlüsse
2x 16-pin
Shader-Modell
6.7
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
192
Empfohlene PSU (Stromversorgung)
1200W

Benchmarks

FP32 (float)
Punktzahl
91.042 TFLOPS

Im Vergleich zu anderen GPUs

FP32 (float) / TFLOPS
166.668 +83.1%
91.375 +0.4%
91.042
63.22 -30.6%
52.326 -42.5%