NVIDIA GeForce RTX 5080 Mobile
Über GPU
Die NVIDIA GeForce RTX 5080 Mobile GPU ist ein beeindruckendes Stück Technologie, das eine leistungsstarke Grafikverarbeitung für Laptops und mobile Geräte bietet. Mit einer Basisuhr von 1500 MHz und einer Boost-Uhr von 2000 MHz ist diese GPU in der Lage, selbst mit den anspruchsvollsten Spielen und Anwendungen problemlos umzugehen.
Eine der herausragenden Eigenschaften des RTX 5080 Mobile ist sein großzügiger 16GB GDDR7-Speicher, der ein reibungsloses und nahtloses Multitasking und Rendern von hochauflösenden Texturen ermöglicht. Die 2500 MHz Speicheruhr sorgt für einen schnellen Zugriff auf Grafikdaten, während der 64MB L2-Cache dazu beiträgt, die Latenz zu reduzieren und die Gesamtleistung zu verbessern.
Mit 8192 Shading-Einheiten ist diese GPU in der Lage, atemberaubende visuelle Effekte und realistische Beleuchtungseffekte zu erzeugen, was sie ideal für Gaming und Content-Erstellung macht. Die TDP von 200W mag am oberen Ende liegen, aber die Leistung, die sie bietet, rechtfertigt den Stromverbrauch.
In Bezug auf die rohe Leistung bietet der RTX 5080 Mobile eine theoretische Leistung von 32.115 TFLOPS, was ihn zu einer der leistungsstärksten mobilen GPUs auf dem Markt macht. Egal, ob Sie ein Profi sind, der eine zuverlässige GPU für Videobearbeitung und 3D-Modellierung sucht, oder ein Spieler, der nach reibungslosem, hochauflösendem Gameplay sucht, der RTX 5080 Mobile wird Ihre Erwartungen sicherlich übertreffen.
Insgesamt bietet die NVIDIA GeForce RTX 5080 Mobile GPU eine außergewöhnliche Leistung, beeindruckende Spezifikationen und zukunftssichere Technologie, was sie zur ersten Wahl für alle macht, die eine leistungsstarke mobile Grafikverarbeitung benötigen.
Basic
Markenname
NVIDIA
Plattform
Mobile
Erscheinungsdatum
January 2025
Modellname
GeForce RTX 5080 Mobile
Generation
GeForce 50 Mobile
Basis-Takt
1500 MHz
Boost-Takt
2000 MHz
Bus-Schnittstelle
PCIe 5.0 x16
Transistoren
Unknown
RT-Kerne
64
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
256
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
256
Foundry
TSMC
Prozessgröße
0 nm
Architektur
Blackwell 2.0
Speicherspezifikationen
Speichergröße
16GB
Speichertyp
GDDR7
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
256bit
Speichertakt
2500 MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
160.0GB/s
Theoretische Leistung
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
192.0 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
512.0 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
32.77 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
512.0 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
32.115
TFLOPS
Verschiedenes
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
64
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
8192
L1-Cache
128 KB (per SM)
L2-Cache
64 MB
TDP (Thermal Design Power)
200W
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
9.1
Stromanschlüsse
None
Shader-Modell
6.8
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
96
Empfohlene PSU (Stromversorgung)
550 W
Benchmarks
FP32 (float)
Punktzahl
32.115
TFLOPS
Im Vergleich zu anderen GPUs
FP32 (float)
/ TFLOPS