AMD Radeon RX 6600 vs AMD Radeon 660M

GPU-Vergleichsergebnis

Nachfolgend finden Sie die Ergebnisse eines Vergleichs von AMD Radeon RX 6600 und AMD Radeon 660M Grafikkarten basierend auf wichtigen Leistungsmerkmalen sowie Stromverbrauch und vielem mehr.

Vorteile

  • Höher Boost-Takt: 2491MHz (2491MHz vs 1900MHz)
  • Größer Speichergröße: 8GB (8GB vs System Shared)
  • Höher Bandbreite: 224.0 GB/s (224.0 GB/s vs System Dependent)
  • Mehr Shading-Einheiten: 1792 (1792 vs 384)
  • Neuer Erscheinungsdatum: January 2022 (October 2021 vs January 2022)

Basic

AMD
Markenname
AMD
October 2021
Erscheinungsdatum
January 2022
Desktop
Plattform
Integrated
Radeon RX 6600
Modellname
Radeon 660M
Navi II
Generation
Rembrandt
1626MHz
Basis-Takt
1500MHz
2491MHz
Boost-Takt
1900MHz
PCIe 4.0 x8
Bus-Schnittstelle
PCIe 4.0 x8
11,060 million
Transistoren
13,100 million
28
RT-Kerne
6
28
Einheiten berechnen
6
112
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
24
TSMC
Foundry
TSMC
7 nm
Prozessgröße
6 nm
RDNA 2.0
Architektur
RDNA 2.0

Speicherspezifikationen

8GB
Speichergröße
System Shared
GDDR6
Speichertyp
System Shared
128bit
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
System Shared
1750MHz
Speichertakt
SystemShared
224.0 GB/s
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
System Dependent

Theoretische Leistung

159.4 GPixel/s
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
30.40 GPixel/s
279.0 GTexel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
45.60 GTexel/s
17.86 TFLOPS
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
2.918 TFLOPS
558.0 GFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
91.20 GFLOPS
8.749 TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
1.43 TFLOPS

Verschiedenes

1792
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
384
128 KB per Array
L1-Cache
128 KB per Array
2MB
L2-Cache
2MB
132W
TDP (Thermal Design Power)
15W
1.3
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.2
2.1
OpenCL-Version
2.0
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
1x 8-pin
Stromanschlüsse
None
6.5
Shader-Modell
6.5
64
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
16
300W
Empfohlene PSU (Stromversorgung)
-

Benchmarks

FP32 (float) / TFLOPS
Radeon RX 6600
8.749 +512%
Radeon 660M
1.43
3DMark Time Spy
Radeon RX 6600
7975 +423%
Radeon 660M
1526
Blender
Radeon RX 6600
1005.46 +993%
Radeon 660M
92