Intel Core i7-10700KF

Intel Core i7-10700KF

Intel Core i7-10700KF: Complete Review and PC Build Recommendations

Guide for Gamers, Enthusiasts, and Professionals


1. Key Specifications: Power on 14 nm

The Intel Core i7-10700KF processor, introduced in 2020, is part of the Comet Lake-S lineup. Despite utilizing the "outdated" 14nm manufacturing process, it showcases impressive performance thanks to architecture optimizations.

Architecture and Cores

- 8 cores, 16 threads thanks to Hyper-Threading.

- Base frequency: 3.8 GHz, maximum in Turbo Boost: 5.1 GHz (single core).

- 16 MB of L3 cache — sufficient for fast data processing in gaming and work tasks.

Manufacturing Process and TDP

- 14nm (Intel was unable to transition to 10nm in the desktop segment), TDP — 125W.

- Unlocked multiplier (designated "K") — overclocking is possible but requires good cooling.

Performance

- Geekbench 6: 1695 (single-thread), 8138 (multi-thread).

- In gaming (e.g., Cyberpunk 2077), it matches the FPS of Ryzen 7 3700X, but with a slight edge due to high frequency.

Key Features

- Support for Intel Thermal Velocity Boost for automatic frequency increase at lower temperatures.

- No integrated graphics (designated "F"), which lowers costs but requires a discrete graphics card.


2. Compatible Motherboards: Choose Wisely

The processor uses the LGA 1200 socket, which is only compatible with 400-series chipsets:

- Z490 — the best choice for enthusiasts:

- Support for CPU and memory overclocking.

- PCIe 3.0 (but some boards offer PCIe 4.0 for future upgrades, such as the ASUS ROG Maximus XII Extreme).

- B460/H470 — for those who do not plan to overclock:

- RAM frequency limit (up to 2933 MHz for B460).

- H410 — budget option for office PCs (not recommended for i7-10700KF due to weak VRM).

Tip: If you want to unleash the potential of the 10700KF, choose a Z490 board with a powerful power delivery system (e.g., MSI MPG Z490 Gaming Edge WiFi).


3. Memory: DDR4 and Dual Channel Mode

The processor supports DDR4 with a maximum frequency of:

- 2933 MHz on B460/H470 chipsets.

- Above 4000 MHz when overclocked on Z490.

Recommendations:

- For gaming: 16 GB (2x8 GB) DDR4-3200 with CL16 timings (e.g., Kingston HyperX Fury).

- For rendering: 32 GB (2x16 GB) DDR4-3600.

Important: DDR5 is not supported — a drawback for those planning upgrades to new platforms.


4. Power Supply: Don't Skimp on Energy

With a TDP of 125W and overclocking, power consumption can reach 200W.

Recommendations:

- Minimum 650W for a system with an RTX 3070 level graphics card.

- Prefer power supplies with an 80+ Gold certification (e.g., Corsair RM650x).

- For top-tier GPUs (RTX 3080/3090) — 750-850W.

Common Mistake by Newbies: Using cheap PSUs with poor voltage stabilization leads to FPS drops and restarts under load.


5. Pros and Cons: Weighing the Arguments

Pros:

- High gaming performance.

- Overclocking potential.

- Stability in work applications (Adobe Premiere, Blender).

Cons:

- Heats up to 95°C under load (liquid cooling or a high-end cooler is necessary).

- No PCIe 4.0 (relevant for next-gen NVMe SSDs).

- Higher power consumption compared to Ryzen 5000 series.


6. Use Cases: Who is this CPU for?

- Gamers: Ideal for 1440p/4K paired with RTX 3080. In CS:GO and Valorant — 300+ FPS.

- Content creators: Rendering in DaVinci Resolve on 8 cores is about 20% faster than with the i5-10600K.

- Streamers: NVENC in graphics cards reduces CPU load, but 16 threads are sufficient for encoding in OBS.

Example from Practice: When building a streaming PC for Dota 2 with i7-10700KF and RTX 3060 Ti, users report no lags even at 1080p60 streaming.


7. Comparison with Competitors

- AMD Ryzen 7 3700X:

- Pros: PCIe 4.0, runs cooler.

- Cons: Lower frequency in games (~10% difference at Full HD).

- AMD Ryzen 7 5800X:

- Leader in single-thread performance, but more expensive.

- Intel Core i9-10900K:

- More powerful by 10–15%, but higher price and minimal gaming improvement.

Conclusion: i7-10700KF is a sweet spot between price and performance.


8. Practical Build Tips

1. Cooling:

- Minimum — a tower cooler with 200W TDP (Noctua NH-D15).

- Optimal — liquid cooling 240mm (NZXT Kraken X53).

2. Case: Choose models with good airflow (Lian Li Lancool II Mesh).

3. Memory: Activate XMP in BIOS to run at nominal frequency.

4. Overclocking: A voltage of up to 1.35V can achieve 5.0 GHz on all cores.


9. Final Conclusion: Who Should Choose the i7-10700KF?

Choose this processor if:

- You want a powerful gaming PC without overspending on top models.

- You need stability in work tasks, but PCIe 4.0 is not critical.

- You are willing to invest in quality cooling and a motherboard.

Alternative: If PCIe 4.0 and energy efficiency are priorities — consider the Ryzen 7 5800X.


The Intel Core i7-10700KF remains a relevant choice in 2023 for those seeking a balance between price and performance. The key is to select the right components for the system.

Basic

Label Name
Intel
Platform
Desktop
Launch Date
April 2020
Model Name
?
The Intel processor number is just one of several factors - along with processor brand, system configurations, and system-level benchmarks - to be considered when choosing the right processor for your computing needs.
i7-10700KF
Code Name
Comet Lake

CPU Specifications

Total Cores
?
Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).
8
Total Threads
?
Where applicable, Intel® Hyper-Threading Technology is only available on Performance-cores.
16
Basic Frequency
3.80 GHz
Max Turbo Frequency
?
Max Turbo Frequency is the maximum single-core frequency at which the processor is capable of operating using Intel® Turbo Boost Technology and, if present, Intel® Turbo Boost Max Technology 3.0 and Intel® Thermal Velocity Boost. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.
5.10 GHz
Intel Turbo Boost Technology 2.0 Frequency
5.00 GHz
Intel Turbo Boost Technology
?
Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.
2.0
Intel Hyper-Threading Technology
?
Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.
Yes
Intel Turbo Boost Max Technology 3.0 Frequency
?
Intel® Turbo Boost Max Technology 3.0 identifies the best performing core(s) on a processor and provides increased performance on those cores through increasing frequency as needed by taking advantage of power and thermal headroom. Intel® Turbo Boost Max Technology 3.0 frequency is the clock frequency of the CPU when running in this mode.
5.10 GHz
Intel Turbo Boost Max Technology 3.0
?
Intel® Turbo Boost Max Technology 3.0 identifies the best performing core(s) on a processor and provides increased performance on those cores through increasing frequency as needed by taking advantage of power and thermal headroom.
Yes
L3 Cache
16 MB
CPU Socket
?
The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.
FCLGA1200
Technology
?
Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.
14 nm
TDP
125 W
Max. Operating Temperature
?
Junction Temperature is the maximum temperature allowed at the processor die.
100°C
PCI Express Version
?
PCI Express Revision is the supported version of the PCI Express standard. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.
3.0
Number of PCI Express Lanes
?
A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. Max # of PCI Express Lanes is the total number of supported lanes.
16
Intel 64
?
Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.
Yes
Instruction Set
?
The instruction set is a hard program stored inside the CPU that guides and optimizes CPU operations. With these instruction sets, the CPU can run more efficiently. There are many manufacturers that design CPUs, which results in different instruction sets, such as the 8086 instruction set for the Intel camp and the RISC instruction set for the ARM camp. x86, ARM v8, and MIPS are all codes for instruction sets. Instruction sets can be extended; for example, x86 added 64-bit support to create x86-64. Manufacturers developing CPUs that are compatible with a certain instruction set need authorization from the instruction set patent holder. A typical example is Intel authorizing AMD, enabling the latter to develop CPUs compatible with the x86 instruction set.
64-bit
PCI Express Configurations
?
PCI Express (PCIe) Configurations describe the available PCIe lane configurations that can be used to link to PCIe devices.
Up to 1x16 | 2x8 | 1x8+2x4

Memory Specifications

Memory Type
?
Intel® processors come in four different types: Single Channel, Dual Channel, Triple Channel, and Flex Mode. Maximum supported memory speed may be lower when populating multiple DIMMs per channel on products that support multiple memory channels.
DDR4-2933
Max Memory Size
?
Max memory size refers to the maximum memory capacity supported by the processor.
128 GB
Memory Channels
?
The number of memory channels refers to the bandwidth operation for real world application.
2
Bus Speed
8 GT/s
Max Memory Bandwidth
?
Max Memory bandwidth is the maximum rate at which data can be read from or stored into a semiconductor memory by the processor (in GB/s).
45.8 GB/s
ECC Memory Supported
?
ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.
No

Miscellaneous

Intel Virtualization Technology (VT-x)
?
Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.
Yes
Intel Virtualization Technology for Directed I/O (VT-d)
?
Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.
Yes
Intel Standard Manageability (ISM)
?
Intel® Standard Manageability is the manageability solution for Intel vPro® Essentials platforms and is a subset of Intel® AMT with out-of-band management over Ethernet and Wi-Fi, but no KVM or new life cycle management features.
Intel® SSE4.1 | Intel® SSE4.2 | Intel® AVX2
Enhanced Intel SpeedStep Technology
?
Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.
Yes
Execute Disable Bit
?
Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.
Yes
Cache
?
CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.
16 MB Intel® Smart Cache
Intel AES New Instructions
?
Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.
Yes
Intel Boot Guard
?
Intel® Device Protection Technology with Boot Guard helps protect the system’s pre-OS environment from viruses and malicious software attacks.
Yes
Intel VT-x with Extended Page Tables (EPT)
?
Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.
Yes
Intel OS Guard
Yes

Benchmarks

Geekbench 6
Single Core Score
1695
Geekbench 6
Multi Core Score
8138
Geekbench 5
Single Core Score
1214
Geekbench 5
Multi Core Score
6750
Passmark CPU
Single Core Score
3048
Passmark CPU
Multi Core Score
18698

Compared to Other CPU

Geekbench 6 Single Core
1916 +13%
1792 +5.7%
1644 -3%
1577 -7%
Geekbench 6 Multi Core
9066 +11.4%
8564 +5.2%
7691 -5.5%
7221 -11.3%
Geekbench 5 Single Core
1295 +6.7%
1258 +3.6%
1179 -2.9%
1148 -5.4%
Geekbench 5 Multi Core
7547 +11.8%
7139 +5.8%
6369 -5.6%
6028 -10.7%
Passmark CPU Single Core
3206 +5.2%
3140 +3%
2971 -2.5%
2899 -4.9%
Passmark CPU Multi Core
19996 +6.9%
19316 +3.3%
18076 -3.3%
17204 -8%