NVIDIA P106 100 vs AMD Radeon RX 580
Результат сравнения видеокарт
Ниже приведены результаты сравнения видеокарт
NVIDIA P106 100
и
AMD Radeon RX 580
по ключевым характеристикам производительности, а также энергопотреблению и многому другому.
Преимущества
- Выше Boost Частота: 1709MHz (1709MHz vs 1340MHz)
- Новее Дата выпуска: June 2017 (June 2017 vs April 2017)
- Больше Объем памяти: 8GB (6GB vs 8GB)
- Выше Пропускная способность: 256.0 GB/s (192.2 GB/s vs 256.0 GB/s)
- Больше Блоки шейдинга: 2304 (1280 vs 2304)
Общая информация
NVIDIA
Производитель
AMD
June 2017
Дата выпуска
April 2017
Desktop
Платформа
Desktop
P106 100
Название модели
Radeon RX 580
Mining GPUs
Поколение
Polaris
1506MHz
Базоввая частота
1257MHz
1709MHz
Boost Частота
1340MHz
PCIe 3.0 x16
Интерфейс шины
PCIe 3.0 x16
4,400 million
Транзисторы
5,700 million
-
Вычислительные юниты
36
80
TMU
?
Блоки наложения текстур (TMU) служат компонентами графического процессора, которые способны вращать, масштабировать и искажать двоичные изображения, а затем размещать их в виде текстур на любой плоскости заданной трехмерной модели. Этот процесс называется отображением текстур.
144
TSMC
Производитель
GlobalFoundries
16 nm
Размер процесса
14 nm
Pascal
Архитектура
GCN 4.0
Характеристики памяти
6GB
Объем памяти
8GB
GDDR5
Тип памяти
GDDR5
192bit
Шина памяти
?
Ширина шины памяти обозначает количество бит данных, которые видеопамять может передать за один такт. Чем больше ширина шины, тем больший объем данных может быть передан мгновенно, что делает ее одним из важнейших параметров видеопамяти. Пропускная способность памяти рассчитывается как: Пропускная способность памяти = Частота памяти x Ширина шины памяти / 8. Следовательно, если частоты памяти одинаковы, ширина шины памяти будет определять размер пропускной способности памяти.
256bit
2002MHz
Частота памяти
2000MHz
192.2 GB/s
Пропускная способность
?
Пропускная способность памяти — это скорость передачи данных между графическим чипом и видеопамятью. Он измеряется в байтах в секунду, и формула для его расчета: пропускная способность памяти = рабочая частота × ширина шины памяти / 8 бит.
256.0 GB/s
Теоретическая производительность
82.03 GPixel/s
Пиксельный филлрейт
?
Скорость заполнения пикселей — это количество пикселей, которые графический процессор (GPU) может визуализировать в секунду, измеряется в мегапикселях/с (миллион пикселей в секунду) или GPixels/s (миллиард пикселей в секунду). Это наиболее часто используемый показатель для оценки производительности обработки пикселей видеокарты.
42.88 GPixel/s
136.7 GTexel/s
Текстурный филлрейт
?
Скорость заполнения текстуры — это количество элементов карты текстур (текселей), которые графический процессор может сопоставить с пикселями за одну секунду.
193.0 GTexel/s
68.36 GFLOPS
FP16 (half)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности.
6.175 TFLOPS
136.7 GFLOPS
FP64 (double)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности, а числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
385.9 GFLOPS
4.463
TFLOPS
FP32 (float)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
6.299
TFLOPS
Другое
10
Потоковый мультипроцессор (SM)
?
Несколько потоковых процессоров (SP) вместе с другими ресурсами образуют потоковый мультипроцессор (SM), который также называется основным ядром графического процессора. Эти дополнительные ресурсы включают в себя такие компоненты, как планировщики деформации, регистры и общую память. SM можно считать сердцем графического процессора, аналогично ядру ЦП, при этом регистры и общая память являются дефицитными ресурсами внутри SM.
-
1280
Блоки шейдинга
?
Самым фундаментальным процессором является потоковый процессор (SP), в котором выполняются определенные инструкции и задачи. Графические процессоры выполняют параллельные вычисления, что означает, что несколько процессоров SP работают одновременно для обработки задач.
2304
48 KB (per SM)
Кэш L1
16 KB (per CU)
1536KB
Кэш L2
2MB
120W
TDP
185W
1.3
Версия Vulkan
?
Vulkan — это кроссплатформенный графический и вычислительный API от Khronos Group, предлагающий высокую производительность и низкую нагрузку на процессор. Он позволяет разработчикам напрямую управлять графическим процессором, снижает затраты на рендеринг и поддерживает многопоточные и многоядерные процессоры.
1.2
3.0
Версия OpenCL
2.1
4.6
OpenGL
4.6
6.1
CUDA
-
12 (12_1)
DirectX
12 (12_0)
1x 6-pin
Разъемы питания
1x 8-pin
6.4
Шейдерная модель
6.4
48
ROP
?
Конвейер растровых операций (ROP) в первую очередь отвечает за расчеты освещения и отражений в играх, а также за управление такими эффектами, как сглаживание (AA), высокое разрешение, дым и огонь. Чем более требовательны к сглаживанию и световым эффектам в игре, тем выше требования к производительности для ROP; в противном случае это может привести к резкому падению частоты кадров.
32
300W
Требуемый блок питания
450W
Бенчмарки
FP32 (float)
/ TFLOPS
P106 100
4.463
Radeon RX 580
6.299
+41%
3DMark Time Spy
P106 100
4126
Radeon RX 580
4451
+8%
Hashcat
/ H/s
P106 100
175982
Radeon RX 580
204331
+16%