NVIDIA GeForce RTX 4070 Mobile vs NVIDIA GeForce RTX 4080 Mobile

Результат сравнения видеокарт

Ниже приведены результаты сравнения видеокарт NVIDIA GeForce RTX 4070 Mobile и NVIDIA GeForce RTX 4080 Mobile по ключевым характеристикам производительности, а также энергопотреблению и многому другому.

Преимущества

  • Выше Boost Частота: 1695MHz (1695MHz vs 1665MHz)
  • Больше Объем памяти: 12GB (8GB vs 12GB)
  • Выше Пропускная способность: 432.0 GB/s (256.0 GB/s vs 432.0 GB/s)
  • Больше Блоки шейдинга: 7424 (4608 vs 7424)

Общая информация

NVIDIA
Производитель
NVIDIA
January 2023
Дата выпуска
January 2023
Mobile
Платформа
Mobile
GeForce RTX 4070 Mobile
Название модели
GeForce RTX 4080 Mobile
GeForce 40 Mobile
Поколение
GeForce 40 Mobile
1395MHz
Базоввая частота
1290MHz
1695MHz
Boost Частота
1665MHz
PCIe 4.0 x16
Интерфейс шины
PCIe 4.0 x16
Unknown
Транзисторы
35,800 million
36
RT ядра
58
144
Tensor ядра
?
Тензорные ядра — это специализированные процессоры, разработанные специально для глубокого обучения, обеспечивающие более высокую производительность обучения и вывода по сравнению с обучением FP32. Они позволяют выполнять быстрые вычисления в таких областях, как компьютерное зрение, обработка естественного языка, распознавание речи, преобразование текста в речь и персонализированные рекомендации. Два наиболее заметных применения тензорных ядер — это DLSS (Deep Learning Super Sampling) и AI Denoiser для снижения шума.
232
144
TMU
?
Блоки наложения текстур (TMU) служат компонентами графического процессора, которые способны вращать, масштабировать и искажать двоичные изображения, а затем размещать их в виде текстур на любой плоскости заданной трехмерной модели. Этот процесс называется отображением текстур.
232
TSMC
Производитель
TSMC
4 nm
Размер процесса
4 nm
Ada Lovelace
Архитектура
Ada Lovelace

Характеристики памяти

8GB
Объем памяти
12GB
GDDR6
Тип памяти
GDDR6
128bit
Шина памяти
?
Ширина шины памяти обозначает количество бит данных, которые видеопамять может передать за один такт. Чем больше ширина шины, тем больший объем данных может быть передан мгновенно, что делает ее одним из важнейших параметров видеопамяти. Пропускная способность памяти рассчитывается как: Пропускная способность памяти = Частота памяти x Ширина шины памяти / 8. Следовательно, если частоты памяти одинаковы, ширина шины памяти будет определять размер пропускной способности памяти.
192bit
2000MHz
Частота памяти
2250MHz
256.0 GB/s
Пропускная способность
?
Пропускная способность памяти — это скорость передачи данных между графическим чипом и видеопамятью. Он измеряется в байтах в секунду, и формула для его расчета: пропускная способность памяти = рабочая частота × ширина шины памяти / 8 бит.
432.0 GB/s

Теоретическая производительность

81.36 GPixel/s
Пиксельный филлрейт
?
Скорость заполнения пикселей — это количество пикселей, которые графический процессор (GPU) может визуализировать в секунду, измеряется в мегапикселях/с (миллион пикселей в секунду) или GPixels/s (миллиард пикселей в секунду). Это наиболее часто используемый показатель для оценки производительности обработки пикселей видеокарты.
133.2 GPixel/s
244.1 GTexel/s
Текстурный филлрейт
?
Скорость заполнения текстуры — это количество элементов карты текстур (текселей), которые графический процессор может сопоставить с пикселями за одну секунду.
386.3 GTexel/s
15.62 TFLOPS
FP16 (half)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности.
24.72 TFLOPS
244.1 GFLOPS
FP64 (double)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности, а числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
386.3 GFLOPS
15.308 TFLOPS
FP32 (float)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
24.226 TFLOPS

Другое

36
Потоковый мультипроцессор (SM)
?
Несколько потоковых процессоров (SP) вместе с другими ресурсами образуют потоковый мультипроцессор (SM), который также называется основным ядром графического процессора. Эти дополнительные ресурсы включают в себя такие компоненты, как планировщики деформации, регистры и общую память. SM можно считать сердцем графического процессора, аналогично ядру ЦП, при этом регистры и общая память являются дефицитными ресурсами внутри SM.
58
4608
Блоки шейдинга
?
Самым фундаментальным процессором является потоковый процессор (SP), в котором выполняются определенные инструкции и задачи. Графические процессоры выполняют параллельные вычисления, что означает, что несколько процессоров SP работают одновременно для обработки задач.
7424
128 KB (per SM)
Кэш L1
128 KB (per SM)
32MB
Кэш L2
48MB
115W
TDP
110W
1.3
Версия Vulkan
?
Vulkan — это кроссплатформенный графический и вычислительный API от Khronos Group, предлагающий высокую производительность и низкую нагрузку на процессор. Он позволяет разработчикам напрямую управлять графическим процессором, снижает затраты на рендеринг и поддерживает многопоточные и многоядерные процессоры.
1.3
3.0
Версия OpenCL
3.0
4.6
OpenGL
4.6
8.9
CUDA
8.9
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
None
Разъемы питания
None
6.7
Шейдерная модель
6.7
48
ROP
?
Конвейер растровых операций (ROP) в первую очередь отвечает за расчеты освещения и отражений в играх, а также за управление такими эффектами, как сглаживание (AA), высокое разрешение, дым и огонь. Чем более требовательны к сглаживанию и световым эффектам в игре, тем выше требования к производительности для ROP; в противном случае это может привести к резкому падению частоты кадров.
80

Бенчмарки

Shadow of the Tomb Raider 2160p / fps
GeForce RTX 4070 Mobile
51
GeForce RTX 4080 Mobile
86 +69%
Shadow of the Tomb Raider 1440p / fps
GeForce RTX 4070 Mobile
100
GeForce RTX 4080 Mobile
153 +53%
Shadow of the Tomb Raider 1080p / fps
GeForce RTX 4070 Mobile
166
GeForce RTX 4080 Mobile
198 +19%
Cyberpunk 2077 1440p / fps
GeForce RTX 4070 Mobile
33
GeForce RTX 4080 Mobile
43 +30%
GTA 5 2160p / fps
GeForce RTX 4070 Mobile
92
GeForce RTX 4080 Mobile
137 +49%
GTA 5 1440p / fps
GeForce RTX 4070 Mobile
88
GeForce RTX 4080 Mobile
137 +56%
FP32 (float) / TFLOPS
GeForce RTX 4070 Mobile
15.308
GeForce RTX 4080 Mobile
24.226 +58%
3DMark Time Spy
GeForce RTX 4070 Mobile
11847
GeForce RTX 4080 Mobile
19286 +63%
Blender
GeForce RTX 4070 Mobile
4092
GeForce RTX 4080 Mobile
6500 +59%
OctaneBench
GeForce RTX 4070 Mobile
349
GeForce RTX 4080 Mobile
559 +60%