NVIDIA H100 CNX

NVIDIA H100 CNX

GPU 정보

NVIDIA H100 CNX GPU는 요구되는 작업 및 고성능 컴퓨팅 작업에 대한 비교할 수없는 성능을 제공하는 전문가급 그래픽 처리 장치입니다. 690MHz의 기본 클럭 속도와 1845MHz의 부스트 클럭 속도를 가지고 있는 H100 CNX는 복잡한 시뮬레이션, 데이터 분석 및 AI 추론 작업을 쉽게 처리할 수 있는 뛰어난 처리 능력을 제공합니다. H100 CNX의 특징 중 하나는 대용량의 80GB HBM2e 메모리로, 대규모 데이터 집합 및 메모리 집약적인 애플리케이션을 원활하게 처리할 수 있습니다. 1593MHz의 고 메모리 클럭 속도는 데이터에 빠른 액세스를 보장하며, 14592개의 쉐이딩 유닛 및 50MB의 L2 캐시는 GPU의 처리 능력을 더욱 강화합니다. 전력 효율면에서, H100 CNX는 350W의 TDP로 설계되어 전력 소비를 희생하지 않고 뛰어난 성능을 제공합니다. GPU의 이론적 성능인 53.84 TFLOPS는 계산 집약적인 작업을 효과적으로 처리할 수 있는 능력을 더욱 강조합니다. 데이터 과학, 엔지니어링 및 콘텐츠 작성과 같은 전문 응용 프로그램에서 NVIDIA H100 CNX GPU는 신뢰할 수 있고 강력한 솔루션이 됩니다. 강력한 성능, 높은 메모리 용량 및 고급 아키텍처로 인해 가장 요구 사항이 높은 작업에 대한 탁월한 성능을 제공하는 전문가들에게 적합합니다. 전반적으로, NVIDIA H100 CNX GPU는 전문가급 그래픽 처리의 새로운 표준을 설정하여 다양한 애플리케이션에 대한 놀라운 성능과 효율성을 제공합니다. 가장 힘든 작업에 대한 고성능 GPU를 찾는 전문가들과 기관에 이상적인 선택입니다.

기초적인

라벨 이름
NVIDIA
플랫폼
Professional
출시일
March 2022
모델명
H100 CNX
세대
Tesla Hopper
기본 클럭
690MHz
부스트 클럭
1845MHz
버스 인터페이스
PCIe 5.0 x16

메모리 사양

메모리 크기
80GB
메모리 타입
HBM2e
메모리 버스
?
메모리 버스 너비는 비디오 메모리가 한 클럭 주기 내에 전송할 수 있는 데이터의 비트 수를 의미합니다. 버스 너비가 크면 한 번에 전송되는 데이터 양이 많아지므로, 비디오 메모리의 중요한 매개 변수 중 하나입니다. 메모리 대역폭은 다음과 같이 계산됩니다: 메모리 대역폭 = 메모리 주파수 x 메모리 버스 너비 / 8. 따라서 메모리 주파수가 비슷한 경우, 메모리 버스 너비가 메모리 대역폭의 크기를 결정합니다.
5120bit
메모리 클럭
1593MHz
대역폭
?
메모리 대역폭은 그래픽 칩과 비디오 메모리 간의 데이터 전송 속도를 의미합니다. 이는 초당 바이트로 측정되며, 계산하는 공식은 다음과 같습니다: 메모리 대역폭 = 작동 주파수 × 메모리 버스 너비 / 8 비트입니다.
2039 GB/s

이론적 성능

픽셀 속도
?
픽셀 필률은 그래픽 처리 장치(GPU)가 초당 렌더링할 수 있는 픽셀 수를 나타내는 지표로, MPixels/s(백만 픽셀/초) 또는 GPixels/s(십억 픽셀/초) 단위로 측정됩니다. 그래픽 카드의 픽셀 처리 성능을 평가하는 가장 일반적으로 사용되는 측정 항목입니다.
44.28 GPixel/s
텍스처 속도
?
"Texture fill rate"은 GPU가 1초에 픽셀에 매핑할 수 있는 텍스처 맵 요소 (텍셀)의 수를 나타냅니다. "텍스처 채움 속도"는 GPU가 1초에 단일 픽셀에 매핑할 수 있는 텍스처 맵 요소 (텍셀)의 수를 의미합니다.
841.3 GTexel/s
FP16 (반 정밀도)
?
GPU 성능을 측정하는 중요한 지표 중 하나는 부동 소수점 연산 능력입니다. 반 정밀도 부동 소수점 숫자(16비트)는 낮은 정밀도가 허용되는 기계 학습과 같은 응용 프로그램에 사용됩니다. 단 정밀도 부동 소수점 숫자(32비트)는 일반적인 멀티미디어 및 그래픽 처리 작업에 사용되며, 이중 정밀도 부동 소수점 숫자(64비트)는 넓은 숫자 범위와 높은 정확도를 요구하는 과학적 계산에 필요합니다.
215.4 TFLOPS
FP64 (배 정밀도)
?
GPU 성능을 측정하는 중요한 지표 중 하나는 부동 소수점 연산 능력입니다. 반 정밀도 부동 소수점 숫자(16비트)는 낮은 정밀도가 허용되는 기계 학습과 같은 응용 프로그램에 사용됩니다. 단 정밀도 부동 소수점 숫자(32비트)는 일반적인 멀티미디어 및 그래픽 처리 작업에 사용되며, 이중 정밀도 부동 소수점 숫자(64비트)는 넓은 숫자 범위와 높은 정확도를 요구하는 과학적 계산에 필요합니다.
26.92 TFLOPS
FP32 (float)
?
GPU 성능을 측정하는 중요한 지표는 부동 소수점 컴퓨팅 기능입니다. 단정밀도 부동 소수점 숫자(32비트)는 일반적인 멀티미디어 및 그래픽 처리 작업에 사용되는 반면, 배정밀도 부동 소수점 숫자(64비트)는 넓은 숫자 범위와 높은 정확도를 요구하는 과학 컴퓨팅에 필요합니다. 반정밀도 부동 소수점 숫자(16비트)는 낮은 정밀도가 허용되는 기계 학습과 같은 응용 프로그램에 사용됩니다.
52.763 TFLOPS

여러 가지 잡다한

스트림 프로세서 개수
?
다중 스트리밍 프로세서(SP)는 다른 자원과 함께 스트리밍 다중프로세서(SM)를 형성하며, 이는 GPU의 주요 코어로도 알려져 있습니다. 이러한 추가 자원에는 워프 스케줄러, 레지스터 및 공유 메모리와 같은 구성 요소가 포함됩니다. SM은 GPU의 핵심이라고 할 수 있으며, CPU 코어와 유사하게 레지스터와 공유 메모리는 SM 내에서는 희소한 자원으로 간주됩니다.
114
새딩 유닛
?
가장 기본적인 처리 단위는 스트리밍 프로세서(SP)이며, 여기서 특정 명령과 작업이 실행됩니다. GPU는 병렬 컴퓨팅을 수행하며, 즉 여러 개의 SP가 동시에 작업을 처리하는 것을 의미합니다. "가장 기본적인 처리 단위는 스트리밍 프로세서(SP)이며, 여기서 특정 명령과 작업이 실행됩니다. GPU는 병렬 컴퓨팅을 수행하며, 다수의 SP가 동시에 작업을 처리합니다."
14592
L1 캐시
256 KB (per SM)
L2 캐시
50MB
TDP
350W
Vulkan 버전
?
Vulkan은 Khronos Group의 크로스 플랫폼 그래픽 및 컴퓨팅 API로, 높은 성능과 낮은 CPU 오버헤드를 제공합니다. 이를 통해 개발자는 GPU를 직접 제어하고, 렌더링 오버헤드를 줄이고, 멀티스레딩 및 멀티코어 프로세서를 지원할 수 있습니다.
N/A
OpenCL 버전
3.0

벤치마크

FP32 (float)
점수
52.763 TFLOPS

다른 GPU와 비교

FP32 (float) / TFLOPS
L20
59.35 +12.5%
53.106 +0.7%
52.763
52.326 -0.8%
52.244 -1%