NVIDIA T600 vs NVIDIA T1000 8 GB
Risultato del confronto GPU
Di seguito sono riportati i risultati di un confronto tra le schede video
NVIDIA T600
e
NVIDIA T1000 8 GB
in base alle caratteristiche prestazionali chiave, nonché al consumo energetico e molto altro.
Vantaggi
- Più alto Boost Clock: 1395MHz (1335MHz vs 1395MHz)
- Più grandi Dimensione memoria: 8GB (4GB vs 8GB)
- Più Unità di ombreggiatura: 896 (640 vs 896)
- Più nuovo Data di rilascio: May 2021 (April 2021 vs May 2021)
Di base
NVIDIA
Nome dell'etichetta
NVIDIA
April 2021
Data di rilascio
May 2021
Desktop
Piattaforma
Desktop
T600
Nome del modello
T1000 8 GB
Quadro
Generazione
Quadro
735MHz
Clock base
1065MHz
1335MHz
Boost Clock
1395MHz
PCIe 3.0 x16
Interfaccia bus
PCIe 3.0 x16
4,700 million
Transistor
4,700 million
40
TMUs
?
Le unità di mappatura texture (TMUs) servono come componenti della GPU, in grado di ruotare, scalare, distorcere immagini binarie e poi posizionarle come texture su qualsiasi piano di un dato modello 3D. Questo processo è chiamato mappatura texture.
56
TSMC
Fonderia
TSMC
12 nm
Dimensione del processo
12 nm
Turing
Architettura
Turing
Specifiche della memoria
4GB
Dimensione memoria
8GB
GDDR6
Tipo di memoria
GDDR6
128bit
Bus memoria
?
La larghezza del bus di memoria si riferisce al numero di bit di dati che la memoria video può trasferire in un singolo ciclo di clock. Maggiore è la larghezza del bus, maggiore è la quantità di dati che può essere trasmessa istantaneamente. La larghezza del bus di memoria è un parametro cruciale della memoria video. La larghezza di banda della memoria si calcola così: Larghezza di banda della memoria = Frequenza della memoria x Larghezza del bus di memoria / 8.
128bit
1250MHz
Clock memoria
1250MHz
160.0 GB/s
Larghezza di banda
?
La larghezza di banda della memoria si riferisce alla velocità di trasferimento dati tra il chip grafico e la memoria video. Si misura in byte al secondo e la formula per calcolarla è: larghezza di banda della memoria = frequenza di lavoro × larghezza del bus di memoria / 8 bit.
160.0 GB/s
Prestazioni teoriche
42.72 GPixel/s
Tasso di pixel
?
Il tasso di riempimento dei pixel si riferisce al numero di pixel che una unità di elaborazione grafica (GPU) può renderizzare al secondo, misurato in MPixel/s o GPixel/s. È la metrica più comunemente usata per valutare le prestazioni di elaborazione dei pixel di una scheda grafica.
44.64 GPixel/s
53.40 GTexel/s
Tasso di texture
?
Il tasso di riempimento della texture si riferisce al numero di elementi di mappa texture (texel) che una GPU può mappare su pixel in un secondo.
78.12 GTexel/s
3.418 TFLOPS
FP16 (metà)
?
Una metrica importante per misurare le prestazioni della GPU è la capacità di calcolo in virgola mobile. I numeri in virgola mobile a metà precisione (16 bit) vengono utilizzati per applicazioni come l'apprendimento automatico, dove è accettabile una precisione inferiore.
5.000 TFLOPS
53.40 GFLOPS
FP64 (doppio)
?
Una metrica importante per misurare le prestazioni della GPU è la capacità di calcolo in virgola mobile. I numeri in virgola mobile a doppia precisione (64 bit) sono richiesti per il calcolo scientifico che richiede un'ampia gamma numerica e un'alta precisione.
78.12 GFLOPS
1.675
TFLOPS
FP32 (virgola mobile)
?
Una metrica importante per misurare le prestazioni della GPU è la capacità di calcolo in virgola mobile. I numeri a virgola mobile a precisione singola (32 bit) vengono utilizzati per attività comuni di elaborazione grafica e multimediale, mentre i numeri a virgola mobile a precisione doppia (64 bit) sono necessari per il calcolo scientifico che richiede un'ampia gamma numerica e un'elevata precisione. I numeri a virgola mobile a mezza precisione (16 bit) vengono utilizzati per applicazioni come l'apprendimento automatico, dove è accettabile una precisione inferiore.
2.55
TFLOPS
Varie
10
Conteggio SM
?
Più processori di streaming (SP), insieme ad altre risorse, formano un multiprocessore di streaming (SM), che è anche considerato come il nucleo principale di una GPU. Queste risorse aggiuntive includono componenti come i programmi di schedulazione warp, i registri e la memoria condivisa.
14
640
Unità di ombreggiatura
?
L'unità di elaborazione più fondamentale è il processore di streaming (SP), dove vengono eseguite istruzioni e compiti specifici. Le GPU eseguono il calcolo parallelo, il che significa che più SP lavorano contemporaneamente per elaborare i compiti.
896
64 KB (per SM)
Cache L1
64 KB (per SM)
1024KB
Cache L2
1024KB
40W
TDP
50W
1.3
Versione Vulkan
?
Vulkan è un'API di grafica e calcolo multipiattaforma di Khronos Group, che offre prestazioni elevate e un basso sovraccarico della CPU. Consente agli sviluppatori di controllare direttamente la GPU, riduce il sovraccarico del rendering e supporta processori multi-threading e multi-core.
1.3
3.0
Versione OpenCL
3.0
4.6
OpenGL
4.6
12 (12_1)
DirectX
12 (12_1)
7.5
CUDA
7.5
None
Connettori di alimentazione
None
32
ROPs
?
Il raster operations pipeline (ROPs) si occupa principalmente di gestire i calcoli di illuminazione e riflessione nei giochi, così come gestire effetti come l'anti-aliasing (AA), l'alta risoluzione, il fumo e il fuoco. Più esigenti sono gli effetti di anti-aliasing e illuminazione in un gioco, più alte sono le prestazioni richieste per i ROPs.
32
6.6
Modello Shader
6.6
200W
PSU suggerito
250W
Classifiche
FP32 (virgola mobile)
/ TFLOPS
T600
1.675
T1000 8 GB
2.55
+52%
3DMark Time Spy
T600
2208
T1000 8 GB
3069
+39%
OctaneBench
T600
51
T1000 8 GB
72
+41%