Intel Iris Xe Graphics 96EU Mobile

Intel Iris Xe Graphics 96EU Mobile

About GPU

The Intel Iris Xe Graphics 96EU Mobile GPU is a solid integrated graphics option for those in need of a discrete-level performance in a thin and light laptop. With a base clock of 300MHz and a boost clock of 1300MHz, this GPU offers great performance for a variety of tasks, including casual gaming, photo and video editing, and multimedia consumption. One of the standout features of this GPU is its 768 shading units, which allow for smooth, detailed graphics and impressive visual effects. The 1024KB L2 cache also helps to improve performance by reducing latency and increasing data transfer speeds. The Intel Iris Xe Graphics 96EU Mobile GPU utilizes system shared memory, which may limit its performance in comparison to dedicated graphics cards with their own dedicated memory. However, for everyday tasks and light gaming, the system shared memory should be more than sufficient. The 15W TDP ensures that this GPU is energy-efficient, which is important for laptop users looking to maximize battery life. With a theoretical performance of 1.997 TFLOPS, the Intel Iris Xe Graphics 96EU Mobile GPU offers a respectable level of performance that can handle modern games and multimedia tasks with ease. In conclusion, the Intel Iris Xe Graphics 96EU Mobile GPU is a strong choice for those in need of integrated graphics with solid performance. Its energy efficiency and solid theoretical performance make it a great option for thin and light laptops.

Basic

Label Name
Intel
Platform
Integrated
Launch Date
January 2023
Model Name
Iris Xe Graphics 96EU Mobile
Generation
HD Graphics-M
Base Clock
300MHz
Boost Clock
1300MHz
Bus Interface
Ring Bus

Memory Specifications

Memory Size
System Shared
Memory Type
System Shared
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
System Shared
Memory Clock
SystemShared
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
System Dependent

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
31.20 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
62.40 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
3.994 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
537.6 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
1.957 TFLOPS

Miscellaneous

Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
768
L2 Cache
1024KB
TDP
15W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0

Benchmarks

FP32 (float)
Score
1.957 TFLOPS

Compared to Other GPU

FP32 (float) / TFLOPS
1.976 +1%
1.957 +0%
1.944 -0.7%