NVIDIA GeForce RTX 4070 Ti vs AMD Radeon RX 7800 XT

GPU Comparison Result

Below are the results of a comparison of NVIDIA GeForce RTX 4070 Ti and AMD Radeon RX 7800 XT video cards based on key performance characteristics, as well as power consumption and much more.

Advantages

  • Higher Boost Clock: 2610MHz (2610MHz vs 2430MHz)
  • More Shading Units: 7680 (7680 vs 3840)
  • Larger Memory Size: 16GB (12GB vs 16GB)
  • Higher Bandwidth: 624.1 GB/s (504.2 GB/s vs 624.1 GB/s)
  • Newer Launch Date: August 2023 (January 2023 vs August 2023)

Basic

NVIDIA
Label Name
AMD
January 2023
Launch Date
August 2023
Desktop
Platform
Desktop
GeForce RTX 4070 Ti
Model Name
Radeon RX 7800 XT
GeForce 40
Generation
Navi III
2310MHz
Base Clock
1295MHz
2610MHz
Boost Clock
2430MHz
PCIe 4.0 x16
Bus Interface
PCIe 4.0 x16
35,800 million
Transistors
28,100 million
60
RT Cores
60
-
Compute Units
60
240
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
-
240
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
240
TSMC
Foundry
TSMC
4 nm
Process Size
5 nm
Ada Lovelace
Architecture
RDNA 3.0

Memory Specifications

12GB
Memory Size
16GB
GDDR6X
Memory Type
GDDR6
192bit
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
1313MHz
Memory Clock
2438MHz
504.2 GB/s
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
624.1 GB/s

Theoretical Performance

208.8 GPixel/s
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
233.3 GPixel/s
626.4 GTexel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
583.2 GTexel/s
40.09 TFLOPS
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
74.65 TFLOPS
626.4 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
1166 GFLOPS
40.892 TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
36.574 TFLOPS

Miscellaneous

60
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
-
7680
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
3840
128 KB (per SM)
L1 Cache
128 KB per Array
48MB
L2 Cache
4MB
285W
TDP
263W
1.3
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
3.0
OpenCL Version
2.2
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
8.9
CUDA
-
1x 16-pin
Power Connectors
2x 8-pin
6.7
Shader Model
6.7
80
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
96
600W
Suggested PSU
700W

Benchmarks

Shadow of the Tomb Raider 2160p / fps
GeForce RTX 4070 Ti
104 +27%
Radeon RX 7800 XT
82
Shadow of the Tomb Raider 1440p / fps
GeForce RTX 4070 Ti
196 +25%
Radeon RX 7800 XT
157
Shadow of the Tomb Raider 1080p / fps
GeForce RTX 4070 Ti
296 +17%
Radeon RX 7800 XT
253
Cyberpunk 2077 2160p / fps
GeForce RTX 4070 Ti
56 +27%
Radeon RX 7800 XT
44
Cyberpunk 2077 1440p / fps
GeForce RTX 4070 Ti
117 +2%
Radeon RX 7800 XT
115
Cyberpunk 2077 1080p / fps
GeForce RTX 4070 Ti
157
Radeon RX 7800 XT
164 +4%
GTA 5 2160p / fps
GeForce RTX 4070 Ti
167 +22%
Radeon RX 7800 XT
137
GTA 5 1440p / fps
GeForce RTX 4070 Ti
173 +26%
Radeon RX 7800 XT
137
GTA 5 1080p / fps
GeForce RTX 4070 Ti
186
Radeon RX 7800 XT
186
FP32 (float) / TFLOPS
GeForce RTX 4070 Ti
40.892 +12%
Radeon RX 7800 XT
36.574
3DMark Time Spy
GeForce RTX 4070 Ti
23193 +14%
Radeon RX 7800 XT
20345
Blender
GeForce RTX 4070 Ti
7429 +200%
Radeon RX 7800 XT
2476
Vulkan
GeForce RTX 4070 Ti
176405 +14%
Radeon RX 7800 XT
155024
OpenCL
GeForce RTX 4070 Ti
206630 +47%
Radeon RX 7800 XT
140145