AMD Radeon Vega 11 Embedded

AMD Radeon Vega 11 Embedded

About GPU

The AMD Radeon Vega 11 Embedded GPU is a solid integrated graphics option for those looking for a reliable and efficient GPU. With a base clock of 300MHz and a boost clock of 1301MHz, this GPU offers a good balance of performance and power efficiency. The 704 shading units contribute to the GPU's ability to handle complex graphical tasks with ease. One of the key features of the Radeon Vega 11 is its low power consumption, with a TDP of just 35W. This makes it a great choice for those looking to build a compact and energy-efficient system without sacrificing graphical performance. The GPU's theoretical performance of 1.832 TFLOPS means that it is more than capable of handling demanding 3D rendering, gaming, and multimedia tasks. The system shared memory, while not as powerful as dedicated VRAM, still offers good overall performance, especially for integrated graphics. In real-world usage, the Radeon Vega 11 performs admirably, handling modern games and multimedia tasks with ease. While it may not be able to match the performance of dedicated high-end GPUs, it still provides a smooth and enjoyable gaming experience at lower settings. Overall, the AMD Radeon Vega 11 Embedded GPU is a solid choice for those looking for a reliable and power-efficient integrated graphics solution. Its combination of good performance, low power consumption, and support for modern graphical technologies make it a great option for budget-conscious gamers and system builders.

Basic

Label Name
AMD
Platform
Integrated
Launch Date
February 2018
Model Name
Radeon Vega 11 Embedded
Generation
Great Horned Owl
Base Clock
300MHz
Boost Clock
1301MHz
Bus Interface
IGP

Memory Specifications

Memory Size
System Shared
Memory Type
System Shared
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
System Shared
Memory Clock
SystemShared
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
System Dependent

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
10.41 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
57.24 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
3.664 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
114.5 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
1.795 TFLOPS

Miscellaneous

Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
704
TDP
35W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.1

Benchmarks

FP32 (float)
Score
1.795 TFLOPS

Compared to Other GPU

FP32 (float) / TFLOPS
1.8 +0.3%
1.796 +0.1%
1.791 -0.2%
1.756 -2.2%