AMD Radeon Sky 700

AMD Radeon Sky 700

About GPU

The AMD Radeon Sky 700 GPU is a powerful and advanced graphics processing unit designed for desktop use. Its 6GB of GDDR5 memory and a memory clock speed of 1375MHz ensure smooth and efficient performance for demanding tasks such as gaming, video editing, and 3D rendering. With 1792 shading units and 768KB of L2 cache, the Radeon Sky 700 GPU delivers high-quality graphics rendering and fast processing speeds. The GPU's TDP of 225W may require a robust cooling system, but it also indicates the potential for high-performance capabilities. The theoretical performance of 3.226 TFLOPS demonstrates the GPU's ability to handle intensive workloads and deliver excellent visual quality. This makes it an ideal choice for professionals and enthusiasts who require top-notch graphics performance. Overall, the AMD Radeon Sky 700 GPU is a reliable and high-performing graphics card that is suitable for a wide range of applications. Its impressive specifications, including substantial memory size, fast memory type, and high shading units, make it a strong contender in the GPU market. Whether used for gaming or professional tasks, this GPU is sure to provide an exceptional visual experience and reliable performance.

Basic

Label Name
AMD
Platform
Desktop
Launch Date
March 2013
Model Name
Radeon Sky 700
Generation
Radeon Sky
Bus Interface
PCIe 3.0 x16

Memory Specifications

Memory Size
6GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
384bit
Memory Clock
1375MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
264.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
28.80 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
100.8 GTexel/s
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
806.4 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
3.291 TFLOPS

Miscellaneous

Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1792
L1 Cache
16 KB (per CU)
L2 Cache
768KB
TDP
225W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
1.2

Benchmarks

FP32 (float)
Score
3.291 TFLOPS

Compared to Other GPU

FP32 (float) / TFLOPS
3.291 +0%
3.291 +0%
3.266 -0.8%
3.264 -0.8%