NVIDIA T600 Max-Q

NVIDIA T600 Max-Q

About GPU

The NVIDIA T600 Max-Q GPU is a mobile platform graphics card that offers impressive performance in a compact and power-efficient package. With a base clock speed of 930MHz and a boost clock speed of 1395MHz, this GPU delivers smooth and responsive gameplay, as well as fast and efficient content creation capabilities. The T600 Max-Q comes equipped with 4GB of GDDR6 memory, providing ample capacity for high-resolution textures and fast data transfers. The 1250MHz memory clock ensures quick access to data, while the 896 shading units and 1024KB L2 cache deliver excellent parallel processing and efficient workload management. One of the standout features of the T600 Max-Q is its low 40W TDP (Thermal Design Power), which allows for high performance while maintaining low power consumption and minimizing heat output. This makes it an ideal choice for thin and light laptops and portable workstations, where power efficiency and thermal management are crucial considerations. With a theoretical performance of 2.5 TFLOPS, the T600 Max-Q is more than capable of handling modern games and demanding professional applications. It offers a balance of performance and power efficiency, making it an excellent choice for users who require a capable GPU in a portable form factor. Overall, the NVIDIA T600 Max-Q GPU is a compelling option for those seeking high performance graphics in a mobile and power-efficient package. Its combination of performance, power efficiency, and compact design make it a versatile choice for a range of portable computing needs.

Basic

Label Name
NVIDIA
Platform
Mobile
Launch Date
April 2021
Model Name
T600 Max-Q
Generation
Quadro Turing-M
Base Clock
930MHz
Boost Clock
1395MHz
Bus Interface
PCIe 3.0 x16
Transistors
4,700 million
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
56
Foundry
TSMC
Process Size
12 nm
Architecture
Turing

Memory Specifications

Memory Size
4GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1250MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
160.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
44.64 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
78.12 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
5.000 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
78.12 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
2.45 TFLOPS

Miscellaneous

SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
14
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
896
L1 Cache
64 KB (per SM)
L2 Cache
1024KB
TDP
40W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
7.5
Power Connectors
None
Shader Model
6.7
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32

Benchmarks

FP32 (float)
Score
2.45 TFLOPS

Compared to Other GPU

FP32 (float) / TFLOPS
2.559 +4.4%
2.509 +2.4%
2.45
2.409 -1.7%
2.35 -4.1%