Intel Arc A550M vs AMD Radeon RX 6700M
GPU Comparison Result
Below are the results of a comparison of Intel Arc A550M and AMD Radeon RX 6700M video cards based on key performance characteristics, as well as power consumption and much more.
Advantages
- Newer Launch Date: January 2022 (January 2022 vs May 2021)
- Higher Boost Clock: 2400MHz (900MHz vs 2400MHz)
- Larger Memory Size: 10GB (8GB vs 10GB)
- Higher Bandwidth: 320.0 GB/s (224.0 GB/s vs 320.0 GB/s)
- More Shading Units: 2304 (2048 vs 2304)
Basic
Intel
Label Name
AMD
January 2022
Launch Date
May 2021
Mobile
Platform
Mobile
Arc A550M
Model Name
Radeon RX 6700M
Alchemist
Generation
Mobility Radeon
300MHz
Base Clock
1489MHz
900MHz
Boost Clock
2400MHz
PCIe 4.0 x16
Bus Interface
PCIe 4.0 x16
21,700 million
Transistors
17,200 million
16
RT Cores
36
-
Compute Units
36
128
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
144
TSMC
Foundry
TSMC
6 nm
Process Size
7 nm
Generation 12.7
Architecture
RDNA 2.0
Memory Specifications
8GB
Memory Size
10GB
GDDR6
Memory Type
GDDR6
128bit
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
160bit
1750MHz
Memory Clock
2000MHz
224.0 GB/s
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
320.0 GB/s
Theoretical Performance
57.60 GPixel/s
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
153.6 GPixel/s
115.2 GTexel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
345.6 GTexel/s
7.373 TFLOPS
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
22.12 TFLOPS
-
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
691.2 GFLOPS
3.612
TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
11.281
TFLOPS
Miscellaneous
2048
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2304
-
L1 Cache
128 KB per Array
8MB
L2 Cache
3MB
60W
TDP
135W
1.3
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
3.0
OpenCL Version
2.1
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
-
Power Connectors
None
64
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64
6.6
Shader Model
6.5
Benchmarks
FP32 (float)
/ TFLOPS
Arc A550M
3.612
Radeon RX 6700M
11.281
+212%
3DMark Time Spy
Arc A550M
5182
Radeon RX 6700M
9718
+88%
Blender
Arc A550M
848
Radeon RX 6700M
1222
+44%