AMD Radeon HD 8950 OEM
About GPU
The AMD Radeon HD 8950 OEM GPU is a powerful graphics card designed for desktops, offering impressive performance and features for gaming and graphic-intensive tasks. With a base clock speed of 850MHz and a boost clock speed of 925MHz, this GPU delivers smooth and responsive gameplay, as well as fast rendering for graphic design and video editing.
The 3GB of GDDR5 memory and a memory clock of 1250MHz ensure plenty of memory bandwidth for handling large textures and complex scenes, while the 1792 shading units provide the processing power needed for sophisticated visual effects and realistic lighting. Additionally, the 768KB of L2 cache helps to reduce memory latency, further optimizing performance.
With a TDP of 200W, the AMD Radeon HD 8950 OEM GPU is a high-power graphics card that requires adequate cooling and a capable power supply to operate at peak efficiency. However, its theoretical performance of 3.315 TFLOPS makes it well-suited for demanding tasks, such as 3D rendering, virtual reality, and 4K gaming.
Overall, the AMD Radeon HD 8950 OEM GPU is a solid choice for users who require high-end graphics performance, whether for gaming, content creation, or professional applications. It offers a good balance of power, memory capacity, and features, making it a compelling option for desktop users seeking reliable and responsive graphics capabilities.
Basic
Label Name
AMD
Platform
Desktop
Launch Date
January 2013
Model Name
Radeon HD 8950 OEM
Generation
Sea Islands
Base Clock
850MHz
Boost Clock
925MHz
Bus Interface
PCIe 3.0 x16
Transistors
4,313 million
Compute Units
28
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
112
Foundry
TSMC
Process Size
28 nm
Architecture
GCN 1.0
Memory Specifications
Memory Size
3GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
384bit
Memory Clock
1250MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
240.0 GB/s
Theoretical Performance
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
29.60 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
103.6 GTexel/s
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
828.8 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
3.381
TFLOPS
Miscellaneous
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1792
L1 Cache
16 KB (per CU)
L2 Cache
768KB
TDP
200W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
1.2
OpenGL
4.6
DirectX
12 (11_1)
Power Connectors
2x 6-pin
Shader Model
5.1
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Suggested PSU
550W
Benchmarks
FP32 (float)
Score
3.381
TFLOPS
Compared to Other GPU
FP32 (float)
/ TFLOPS