NVIDIA GeForce RTX 4050 Mobile vs NVIDIA GeForce RTX 2050 Mobile

GPU-Vergleichsergebnis

Nachfolgend finden Sie die Ergebnisse eines Vergleichs von NVIDIA GeForce RTX 4050 Mobile und NVIDIA GeForce RTX 2050 Mobile Grafikkarten basierend auf wichtigen Leistungsmerkmalen sowie Stromverbrauch und vielem mehr.

Vorteile

  • Höher Boost-Takt: 1755MHz (1755MHz vs 1477MHz)
  • Größer Speichergröße: 6GB (6GB vs 4GB)
  • Höher Bandbreite: 192.0 GB/s (192.0 GB/s vs 112.0 GB/s)
  • Mehr Shading-Einheiten: 2560 (2560 vs 2048)
  • Neuer Erscheinungsdatum: January 2023 (January 2023 vs December 2021)

Basic

NVIDIA
Markenname
NVIDIA
January 2023
Erscheinungsdatum
December 2021
Mobile
Plattform
Mobile
GeForce RTX 4050 Mobile
Modellname
GeForce RTX 2050 Mobile
GeForce 40 Mobile
Generation
GeForce 20 Mobile
1455MHz
Basis-Takt
1185MHz
1755MHz
Boost-Takt
1477MHz
PCIe 4.0 x16
Bus-Schnittstelle
PCIe 3.0 x8

Speicherspezifikationen

6GB
Speichergröße
4GB
GDDR6
Speichertyp
GDDR6
96bit
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
64bit
2000MHz
Speichertakt
1750MHz
192.0 GB/s
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
112.0 GB/s

Theoretische Leistung

84.24 GPixel/s
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
47.26 GPixel/s
140.4 GTexel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
94.53 GTexel/s
8.986 TFLOPS
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
12.10 TFLOPS
140.4 GFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
189.1 GFLOPS
9.166 TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
5.929 TFLOPS

Verschiedenes

20
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
16
2560
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
2048
128 KB (per SM)
L1-Cache
64 KB (per SM)
12MB
L2-Cache
2MB
50W
TDP (Thermal Design Power)
45W
1.3
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
3.0
OpenCL-Version
3.0

Benchmarks

GTA 5 2160p / fps
GeForce RTX 4050 Mobile
65 +67%
GeForce RTX 2050 Mobile
39
GTA 5 1440p / fps
GeForce RTX 4050 Mobile
65 +67%
GeForce RTX 2050 Mobile
39
GTA 5 1080p / fps
GeForce RTX 4050 Mobile
171 +94%
GeForce RTX 2050 Mobile
88
FP32 (float) / TFLOPS
GeForce RTX 4050 Mobile
9.166 +55%
GeForce RTX 2050 Mobile
5.929
3DMark Time Spy
GeForce RTX 4050 Mobile
8280 +141%
GeForce RTX 2050 Mobile
3430
Blender
GeForce RTX 4050 Mobile
2829 +256%
GeForce RTX 2050 Mobile
795
OctaneBench
GeForce RTX 4050 Mobile
260 +313%
GeForce RTX 2050 Mobile
63