NVIDIA GeForce RTX 3070 Ti vs AMD Radeon RX 7700 XT

GPU-Vergleichsergebnis

Nachfolgend finden Sie die Ergebnisse eines Vergleichs von NVIDIA GeForce RTX 3070 Ti und AMD Radeon RX 7700 XT Grafikkarten basierend auf wichtigen Leistungsmerkmalen sowie Stromverbrauch und vielem mehr.

Vorteile

  • Höher Bandbreite: 608.3 GB/s (608.3 GB/s vs 432.0 GB/s)
  • Mehr Shading-Einheiten: 6144 (6144 vs 3456)
  • Höher Boost-Takt: 2544MHz (1770MHz vs 2544MHz)
  • Größer Speichergröße: 12GB (8GB vs 12GB)
  • Neuer Erscheinungsdatum: August 2023 (May 2021 vs August 2023)

Basic

NVIDIA
Markenname
AMD
May 2021
Erscheinungsdatum
August 2023
Desktop
Plattform
Desktop
GeForce RTX 3070 Ti
Modellname
Radeon RX 7700 XT
GeForce 30
Generation
Navi III
1575MHz
Basis-Takt
1700MHz
1770MHz
Boost-Takt
2544MHz
PCIe 4.0 x16
Bus-Schnittstelle
PCIe 4.0 x16
17,400 million
Transistoren
28,100 million
48
RT-Kerne
54
-
Einheiten berechnen
54
192
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
-
192
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
216
Samsung
Foundry
TSMC
8 nm
Prozessgröße
5 nm
Ampere
Architektur
RDNA 3.0

Speicherspezifikationen

8GB
Speichergröße
12GB
GDDR6X
Speichertyp
GDDR6
256bit
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
192bit
1188MHz
Speichertakt
2250MHz
608.3 GB/s
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
432.0 GB/s

Theoretische Leistung

169.9 GPixel/s
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
244.2 GPixel/s
339.8 GTexel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
549.5 GTexel/s
21.75 TFLOPS
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
70.34 TFLOPS
339.8 GFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
1099 GFLOPS
21.315 TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
35.873 TFLOPS

Verschiedenes

48
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
-
6144
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
3456
128 KB (per SM)
L1-Cache
128 KB per Array
4MB
L2-Cache
2MB
290W
TDP (Thermal Design Power)
245W
1.3
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
3.0
OpenCL-Version
2.2
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
8.6
CUDA
-
1x 12-pin
Stromanschlüsse
2x 8-pin
96
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
96
6.6
Shader-Modell
6.7
600W
Empfohlene PSU (Stromversorgung)
550W

Benchmarks

Shadow of the Tomb Raider 2160p / fps
GeForce RTX 3070 Ti
69 +10%
Radeon RX 7700 XT
63
Shadow of the Tomb Raider 1440p / fps
GeForce RTX 3070 Ti
128
Radeon RX 7700 XT
131 +2%
Shadow of the Tomb Raider 1080p / fps
GeForce RTX 3070 Ti
174
Radeon RX 7700 XT
214 +23%
Cyberpunk 2077 2160p / fps
GeForce RTX 3070 Ti
52 +41%
Radeon RX 7700 XT
37
Cyberpunk 2077 1440p / fps
GeForce RTX 3070 Ti
64
Radeon RX 7700 XT
97 +52%
Cyberpunk 2077 1080p / fps
GeForce RTX 3070 Ti
98
Radeon RX 7700 XT
142 +45%
GTA 5 2160p / fps
GeForce RTX 3070 Ti
79
Radeon RX 7700 XT
108 +37%
GTA 5 1440p / fps
GeForce RTX 3070 Ti
116 +2%
Radeon RX 7700 XT
114
FP32 (float) / TFLOPS
GeForce RTX 3070 Ti
21.315
Radeon RX 7700 XT
35.873 +68%
3DMark Time Spy
GeForce RTX 3070 Ti
15163
Radeon RX 7700 XT
15945 +5%
Blender
GeForce RTX 3070 Ti
3510.95 +51%
Radeon RX 7700 XT
2323
Vulkan
GeForce RTX 3070 Ti
127663
Radeon RX 7700 XT
136465 +7%
OpenCL
GeForce RTX 3070 Ti
138595 +9%
Radeon RX 7700 XT
126692