NVIDIA GeForce RTX 3060 vs NVIDIA GeForce RTX 4070

GPU-Vergleichsergebnis

Nachfolgend finden Sie die Ergebnisse eines Vergleichs von NVIDIA GeForce RTX 3060 und NVIDIA GeForce RTX 4070 Grafikkarten basierend auf wichtigen Leistungsmerkmalen sowie Stromverbrauch und vielem mehr.

Vorteile

  • Höher Boost-Takt: 2475MHz (1777MHz vs 2475MHz)
  • Höher Bandbreite: 504.2 GB/s (360.0 GB/s vs 504.2 GB/s)
  • Mehr Shading-Einheiten: 5888 (3584 vs 5888)
  • Neuer Erscheinungsdatum: April 2023 (January 2021 vs April 2023)

Basic

NVIDIA
Markenname
NVIDIA
January 2021
Erscheinungsdatum
April 2023
Desktop
Plattform
Desktop
GeForce RTX 3060
Modellname
GeForce RTX 4070
GeForce 30
Generation
GeForce 40
1320MHz
Basis-Takt
1920MHz
1777MHz
Boost-Takt
2475MHz
PCIe 4.0 x16
Bus-Schnittstelle
PCIe 4.0 x16
12,000 million
Transistoren
35,800 million
28
RT-Kerne
46
112
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
184
112
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
184
Samsung
Foundry
TSMC
8 nm
Prozessgröße
5 nm
Ampere
Architektur
Ada Lovelace

Speicherspezifikationen

12GB
Speichergröße
12GB
GDDR6
Speichertyp
GDDR6X
192bit
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
192bit
1875MHz
Speichertakt
1313MHz
360.0 GB/s
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
504.2 GB/s

Theoretische Leistung

85.30 GPixel/s
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
158.4 GPixel/s
199.0 GTexel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
455.4 GTexel/s
12.74 TFLOPS
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
29.15 TFLOPS
199.0 GFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
455.4 GFLOPS
12.995 TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
29.733 TFLOPS

Verschiedenes

28
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
46
3584
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
5888
128 KB (per SM)
L1-Cache
128 KB (per SM)
3MB
L2-Cache
36MB
170W
TDP (Thermal Design Power)
200W
1.3
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
3.0
OpenCL-Version
3.0
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
8.6
CUDA
8.9
1x 12-pin
Stromanschlüsse
1x 16-pin
48
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
64
6.6
Shader-Modell
6.7
450W
Empfohlene PSU (Stromversorgung)
550W

Benchmarks

Shadow of the Tomb Raider 2160p / fps
GeForce RTX 3060
45
GeForce RTX 4070
84 +87%
Shadow of the Tomb Raider 1440p / fps
GeForce RTX 3060
78
GeForce RTX 4070
157 +101%
Shadow of the Tomb Raider 1080p / fps
GeForce RTX 3060
114
GeForce RTX 4070
261 +129%
Cyberpunk 2077 2160p / fps
GeForce RTX 3060
31
GeForce RTX 4070
41 +32%
Cyberpunk 2077 1440p / fps
GeForce RTX 3060
37
GeForce RTX 4070
95 +157%
Cyberpunk 2077 1080p / fps
GeForce RTX 3060
55
GeForce RTX 4070
127 +131%
GTA 5 2160p / fps
GeForce RTX 3060
49
GeForce RTX 4070
141 +188%
GTA 5 1440p / fps
GeForce RTX 3060
80
GeForce RTX 4070
147 +84%
FP32 (float) / TFLOPS
GeForce RTX 3060
12.995
GeForce RTX 4070
29.733 +129%
3DMark Time Spy
GeForce RTX 3060
8882
GeForce RTX 4070
17481 +97%
Vulkan
GeForce RTX 3060
84816
GeForce RTX 4070
151403 +79%
OpenCL
GeForce RTX 3060
89301
GeForce RTX 4070
168239 +88%