Intel Iris Plus Graphics G7 vs NVIDIA GeForce GTX 760 OEM
GPU-Vergleichsergebnis
Nachfolgend finden Sie die Ergebnisse eines Vergleichs von Intel Iris Plus Graphics G7 und NVIDIA GeForce GTX 760 OEM Grafikkarten basierend auf wichtigen Leistungsmerkmalen sowie Stromverbrauch und vielem mehr.
Vorteile
- Höher Boost-Takt: 1050MHz (1050MHz vs 1046MHz)
- Neuer Erscheinungsdatum: May 2020 (May 2020 vs November 2016)
- Größer Speichergröße: 2GB (System Shared vs 2GB)
- Höher Bandbreite: 211.2 GB/s (System Dependent vs 211.2 GB/s)
- Mehr Shading-Einheiten: 1344 (512 vs 1344)
Basic
Intel
Markenname
NVIDIA
May 2020
Erscheinungsdatum
November 2016
Integrated
Plattform
Desktop
Iris Plus Graphics G7
Modellname
GeForce GTX 760 OEM
HD Graphics-M
Generation
GeForce 700
300MHz
Basis-Takt
993MHz
1050MHz
Boost-Takt
1046MHz
Ring Bus
Bus-Schnittstelle
PCIe 3.0 x16
Unknown
Transistoren
3,540 million
32
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
112
Intel
Foundry
TSMC
10 nm+
Prozessgröße
28 nm
Generation 11.0
Architektur
Kepler
Speicherspezifikationen
System Shared
Speichergröße
2GB
System Shared
Speichertyp
GDDR5
System Shared
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
256bit
SystemShared
Speichertakt
1650MHz
System Dependent
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
211.2 GB/s
Theoretische Leistung
8.400 GPixel/s
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
29.29 GPixel/s
33.60 GTexel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
117.2 GTexel/s
2.150 TFLOPS
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
-
268.8 GFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
117.2 GFLOPS
1.097
TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
2.868
TFLOPS
Verschiedenes
512
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
1344
-
L1-Cache
16 KB (per SMX)
-
L2-Cache
512KB
15W
TDP (Thermal Design Power)
170W
1.3
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.1
3.0
OpenCL-Version
3.0
4.6
OpenGL
4.6
12 (12_1)
DirectX
12 (11_0)
-
CUDA
3.0
-
Stromanschlüsse
2x 6-pin
8
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
32
6.4
Shader-Modell
5.1
-
Empfohlene PSU (Stromversorgung)
450W
Benchmarks
FP32 (float)
/ TFLOPS
Iris Plus Graphics G7
1.097
GeForce GTX 760 OEM
2.868
+161%