Intel Arc A730M vs Intel Arc A770M

GPU-Vergleichsergebnis

Nachfolgend finden Sie die Ergebnisse eines Vergleichs von Intel Arc A730M und Intel Arc A770M Grafikkarten basierend auf wichtigen Leistungsmerkmalen sowie Stromverbrauch und vielem mehr.

Vorteile

  • Höher Boost-Takt: 1650MHz (1100MHz vs 1650MHz)
  • Größer Speichergröße: 16GB (12GB vs 16GB)
  • Höher Bandbreite: 512.0 GB/s (336.0 GB/s vs 512.0 GB/s)
  • Mehr Shading-Einheiten: 4096 (3072 vs 4096)

Basic

Intel
Markenname
Intel
January 2022
Erscheinungsdatum
January 2022
Mobile
Plattform
Mobile
Arc A730M
Modellname
Arc A770M
Alchemist
Generation
Alchemist
300MHz
Basis-Takt
300MHz
1100MHz
Boost-Takt
1650MHz
PCIe 4.0 x16
Bus-Schnittstelle
PCIe 4.0 x16
21,700 million
Transistoren
21,700 million
24
RT-Kerne
32
192
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
256
TSMC
Foundry
TSMC
6 nm
Prozessgröße
6 nm
Generation 12.7
Architektur
Generation 12.7

Speicherspezifikationen

12GB
Speichergröße
16GB
GDDR6
Speichertyp
GDDR6
192bit
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
256bit
1750MHz
Speichertakt
2000MHz
336.0 GB/s
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
512.0 GB/s

Theoretische Leistung

105.6 GPixel/s
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
211.2 GPixel/s
211.2 GTexel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
422.4 GTexel/s
13.52 TFLOPS
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
27.03 TFLOPS
6.893 TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
13.25 TFLOPS

Verschiedenes

3072
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
4096
12MB
L2-Cache
16MB
80W
TDP (Thermal Design Power)
120W
1.3
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
3.0
OpenCL-Version
3.0
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
96
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
128
6.6
Shader-Modell
6.6

Benchmarks

FP32 (float) / TFLOPS
Arc A730M
6.893
Arc A770M
13.25 +92%
3DMark Time Spy
Arc A730M
7462
Arc A770M
10469 +40%
Blender
Arc A730M
1466 +3%
Arc A770M
1428