AMD Radeon RX 6600 vs AMD Radeon RX 6650M XT
GPU-Vergleichsergebnis
Nachfolgend finden Sie die Ergebnisse eines Vergleichs von AMD Radeon RX 6600 und AMD Radeon RX 6650M XT Grafikkarten basierend auf wichtigen Leistungsmerkmalen sowie Stromverbrauch und vielem mehr.
Vorteile
- Höher Boost-Takt: 2491MHz (2491MHz vs 2416MHz)
- Höher Bandbreite: 256.0 GB/s (224.0 GB/s vs 256.0 GB/s)
- Mehr Shading-Einheiten: 2048 (1792 vs 2048)
- Neuer Erscheinungsdatum: January 2022 (October 2021 vs January 2022)
Basic
AMD
Markenname
AMD
October 2021
Erscheinungsdatum
January 2022
Desktop
Plattform
Mobile
Radeon RX 6600
Modellname
Radeon RX 6650M XT
Navi II
Generation
Mobility Radeon
1626MHz
Basis-Takt
2068MHz
2491MHz
Boost-Takt
2416MHz
PCIe 4.0 x8
Bus-Schnittstelle
PCIe 4.0 x8
11,060 million
Transistoren
11,060 million
28
RT-Kerne
32
28
Einheiten berechnen
32
112
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
128
TSMC
Foundry
TSMC
7 nm
Prozessgröße
7 nm
RDNA 2.0
Architektur
RDNA 2.0
Speicherspezifikationen
8GB
Speichergröße
8GB
GDDR6
Speichertyp
GDDR6
128bit
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
128bit
1750MHz
Speichertakt
2000MHz
224.0 GB/s
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
256.0 GB/s
Theoretische Leistung
159.4 GPixel/s
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
154.6 GPixel/s
279.0 GTexel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
309.2 GTexel/s
17.86 TFLOPS
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
19.79 TFLOPS
558.0 GFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
618.5 GFLOPS
8.749
TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
10.094
TFLOPS
Verschiedenes
1792
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
2048
128 KB per Array
L1-Cache
128 KB per Array
2MB
L2-Cache
2MB
132W
TDP (Thermal Design Power)
120W
1.3
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
2.1
OpenCL-Version
2.1
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
1x 8-pin
Stromanschlüsse
None
6.5
Shader-Modell
6.5
64
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
64
300W
Empfohlene PSU (Stromversorgung)
-
Benchmarks
FP32 (float)
/ TFLOPS
Radeon RX 6600
8.749
Radeon RX 6650M XT
10.094
+15%
3DMark Time Spy
Radeon RX 6600
7975
Radeon RX 6650M XT
9283
+16%